Slab tearing and lithospheric structures in Luzon island, Philippines: constraints from P- and S-wave local earthquake tomography

Author:

Nguyen Cong-Nghia,Huang Bor-Shouh,Lee Tung-Yi,Chen Po-Fei,Nguyen Van Duong,Narag Ishmael,Bautista Bartolome C.,Melosantos Arnaldo

Abstract

Luzon Island is a complex setting of seismicity and magmatism caused by the subduction of the South China Sea lithosphere and the presence of a major strike-slip fault system, the Philippine Fault. Previous studies of the structure of this subduction zone have suggested that a ridge subduction system resulted in a slab tearing along the ridge. On the other hand, the Philippine Fault plays an important role in understanding how major strike-slip faults deform and displace at a continental scale. To constrain the lithospheric geological structure in the area and refine the slab tearing model, we performed a P- and S-wave seismic tomography travel time inversion using local earthquakes. The dataset has been combined from seismic phases reported by the International Seismological Centre and new pickings from six broadband seismic stations in northern Luzon. The three-dimensional P- and S-wave velocity models in Luzon Island were analyzed by applying the LOTOS package with a one-dimensional velocity model obtained from the VELEST program. Our tomographic images indicate contrasting velocity structures across the Philippine Fault to a depth of 60 km. Therefore, we suggest that the Philippine Fault might be a lithospheric structure that displaces both the crust and the upper mantle. The results also indicate regions of low-velocity slab windows from a depth of 40 km, which are interpreted as the sites of slab tearing. Compared with focal mechanisms and earthquake occurrence in this region, we propose that slab tearing extends from the fossil ridge and creates regional kinematic perturbations. The tearing produces shallow upwelling magma to stay in the chambers beneath the crust, which is in contrast to the magmatic system observed in other regions.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3