The application of Monte Carlo modelling to quantify in situ hydrogen and associated element production in the deep subsurface

Author:

Warr Oliver,Song Min,Sherwood Lollar Barbara

Abstract

The subsurface production, accumulation, and cycling of hydrogen (H2), and cogenetic elements such as sulfate (SO42-) and the noble gases (e.g., 4He, 40Ar) remains a critical area of research in the 21st century. Understanding how these elements generate, migrate, and accumulate is essential in terms of developing hydrogen as an alternative low-carbon energy source and as a basis for helium exploration which is urgently needed to meet global demand of this gas used in medical, industrial, and research fields. Beyond this, understanding the subsurface cycles of these compounds is key for investigating chemosynthetically-driven habitability models with relevance to the subsurface biosphere and the search for life beyond Earth. The challenge is that to evaluate each of these critical element cycles requires quantification and accurate estimates of production rates. The natural variability and intersectional nature of the critical parameters controlling production for different settings (local estimates), and for the planet as a whole (global estimates) are complex. To address this, we propose for the first time a Monte Carlo based approach which is capable of simultaneously incorporating both random and normally distributed ranges for all input parameters. This approach is capable of combining these through deterministic calculations to determine both the most probable production rates for these elements for any given system as well as defining upper and lowermost production rates as a function of probability and the most critical variables. This approach, which is applied to the Kidd Creek Observatory to demonstrate its efficacy, represents the next-generation of models which are needed to effectively incorporate the variability inherent to natural systems and to accurately model H2, 4He, 40Ar, SO42- production on Earth and beyond.

Funder

Nuclear Waste Management Organization

Natural Sciences and Engineering Research Council of Canada

Social Sciences and Humanities Research Council of Canada

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3