Grain-Size Analysis of Ancient Deep-Marine Sediments Using Laser Diffraction

Author:

Brooks Hannah L.,Steel Elisabeth,Moore Mikaela

Abstract

Grain-size analysis of siliciclastic sedimentary rocks provides critical information for interpreting flow dynamics and depositional environments in sedimentary systems and for analysing reservoir quality of sandstone. Methods such as sieving and thin-section analysis are time consuming and unsuited for large sample numbers. Laser diffraction particle analysis is quick and reliable for analysing 100s of samples, assuming successful disaggregation. Here, we evaluate this method utilizing samples from three siliciclastic formations in Northern Italy: the Miocene Castagnola and Marnoso-Arenacea Formations, and the Cretaceous to Palaeocene Gottero Formation, which vary in degree of lithification. We focus on: 1) methods of whole-rock disaggregation; 2) methods of subsampling sediment for laser diffraction analysis; and 3) comparison of thin-section analysis with laser-diffraction particle size analysis. Using an ultrasonic bath and a SELFRAG (high voltage selective fragmentation) as disaggregation tools, this study evaluates separation of whole, undamaged grains subsequently measured by laser diffraction analysis. We show that it is possible to disaggregate ancient, well cemented rocks using an ultrasonic bath. When disaggregating samples with the SELFRAG method, grain-size measurements become less accurate and less precise with increasing sample lithification and increased presence of cement. This is likely a combination of incomplete grain disaggregation in the SELFRAG and heterogeneity within samples. Following disaggregation, we compare sub-sampling methods using a stirrer plate versus a pipette. Both produce accurate analyses, but the stirrer method is the most reliable and replicable. A comparative small subsample method, run as one whole sample with no need for subdivision into aliquots, is found to be reliable and replicable but is more susceptible to heterogeneity within field samples. When comparing laser diffraction results to grain-size volume methods estimated from thin-section analysis, thin-section sand grains are overestimated, and clay/silt grains are inaccurate. These results provide a framework for understanding potential biases introduced through various sample preparation and measurement methods.

Funder

Natural Sciences and Engineering Research Council of Canada

Queen’s University

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3