Influence of extensional strike-slip fault systems on hydrocarbon accumulation: case studies from Huanghekoudong and Miaoxi’nan sub-sags

Author:

Fu Sheng,Wang Deyu,Yang Haifeng,Song Lijun,Ma Ming,Wang Kaiyu

Abstract

Extensional strike-slip basins have unique structural features that influence both sub-sags and traps. Despite previous investigations into the extension-strike-slip fault system, there remains a gap in the comprehensive analysis of its influence on sub-sag formation and trap development. The Huanghekoudong and Miaoxi’nan sub-sags within the Bohai Bay Basin, intersected by the Tan-Lu Fault Zone, offer exemplary cases for examining the interplay between strike-slip and extensional tectonic regimes. The neotectonic strike-slip movements along the Tan-Lu Fault Zone have given rise to various extensional strike-slip overlap zones in these sub-sags, rendering these locales ideal for investigating the dynamics of strike-slip and extensional tectonic processes. Employing three-dimensional seismic data, well logs, and a newly constructed sequence stratigraphic framework, our research delineates the geometric and kinematic phenomena characteristic of the extensional strike-slip fault system, including the dynamics of extensional fault deformation and interaction through time. By scrutinizing the fault system’s vital role in shaping sub-sag evolution and trap genesis, we present a comprehensive model that significantly contributes to our understanding of structural trapping dynamics. This model not only fine-tunes existing trapping models but also offers invaluable insights for future exploration strategies within the Bohai Bay Basin and other similar extensional strike-slip basins worldwide. Our findings highlight the novel and significant implications of the extensional strike-slip fault system in controlling sub-sag and trap features, thus bridging a notable gap in existing geotechnical knowledge.

Funder

Natural Science Basic Research Program of Shaanxi Province

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3