Author:
Jia Pin,Ke Xianzhe,Li Yang,Peng Cong,Cheng Linsong
Abstract
Compared with conventional reservoirs, shale reservoirs are more difficult to develop due to their characteristics of self-generation and self-storage and tightness. Based on the experience accumulated in production practice, the technical method of improving shale oil development through shut-in is put forward. The literature research on shale reservoirs shows that there is a lack of microscopic study on imbibition, the essence of oil–water exchange is not clear enough, and there is a lack of the systematic summary and induction of theoretical knowledge. This article starts from the background of shut-in stimulation of Gulong shale oil, conducts literature research on the related knowledge of shut-in of shale oil from three aspects: characterization of fracture network, shut-in mechanism, and oil and water distribution state, and summarizes the law of shut-in of shale oil in a microscopic aspect. On this basis, a dual-porosity numerical simulation model is established according to the geological and fluid characteristics of the Gulong shale oil reservoir. Through the simulation of a numerical simulation model, the water saturation and pressure maps of the matrix and lamellation-fracture system in the process of shut-in were obtained. It was found that the matrix system basically did not participate in the oil–water exchange in the process of shut-in, so in the subsequent characteristic curve analysis, only the lamellation-fracture system was mapped and analyzed. The water saturation and pressure curves of different distances of the main fracture at different times were made, and it was found that the water saturation and pressure in the main fracture and near fracture areas were higher, and the change was more obvious than that in the far. Thus, the pressure drop curves of the near fracture were used to analyze the flow stage of the fluid. The single variable method is used to analyze the influencing factors from two aspects: the fracture density and permeability of the stimulated zone. The results will give a better understanding of the oil and water distribution during shut-in and guide the duration of shut-in in shale oil reservoirs.
Funder
National Natural Science Foundation of China
Science Foundation of China University of Petroleum, Beijing
Subject
General Earth and Planetary Sciences
Reference46 articles.
1. Gas injection pilot design simulation model in EaGulonge Ford;Basbug,2022
2. Laboratory analyses and compositional simulation of the EaGulonge Ford and wolfcamp shales: A novel shale oil eor process;Bustin,2022
3. Key Problems and Thoughts on spontaneous imbibition of porous media [J];Cai;Comput. Phys.,2021
4. Impact of water dynamics in fractures on the performance of hydraulically fractured wells in gas-shale reservoirs[J];Cheng;J. Canadian Petroleum Tech.,2010
5. Relative Permeability Behavior of Oil-Water Systems in Wolfcamp and Eagle Ford Fractures;Guerra,2022