Practical Volcano-Independent Recognition of Seismic Events: VULCAN.ears Project

Author:

Cortés Guillermo,Carniel Roberto,Lesage Philippe,Mendoza M. Ángeles,Della Lucia Ivo

Abstract

Recognizing the mechanisms underlying seismic activity and tracking temporal and spatial patterns of earthquakes represent primary inputs to monitor active volcanoes and forecast eruptions. To quantify this seismicity, catalogs are established to summarize the history of the observed types and number of volcano-seismic events. In volcano observatories the detection and posterior classification or labeling of the events is manually performed by technicians, often suffering a lack of unified criteria and eventually resulting in poorly reliable labeled databases. State-of-the-art automatic Volcano-Seismic Recognition (VSR) systems allow real-time monitoring and consistent catalogs. VSR systems are generally designed to monitor one station of one volcano, decreasing their efficiency when used to recognize events from another station, in a different eruptive scenario or at different volcanoes. We propose a Volcano-Independent VSR (VI.VSR) solution for creating an exportable VSR system, whose aim is to generate labeled catalogs for observatories which do not have the resources for deploying their own systems. VI.VSR trains universal recognition models with data of several volcanoes to obtain portable and robust characteristics. We have designed the VULCAN.ears ecosystem to facilitate the VI.VSR application in observatories, including the pyVERSO tool to perform VSR tasks in an intuitive way, its graphical interface, geoStudio, and liveVSR for real-time monitoring. Case studies are presented at Deception, Colima, Popocatépetl and Arenal volcanoes testing VI.VSR models in challenging scenarios, obtaining encouraging recognition results in the 70–80% accuracy range. VI.VSR technology represents a major breakthrough to monitor volcanoes with minimal effort, providing reliable seismic catalogs to characterise real-time changes.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Reference58 articles.

1. Array analysis using circular-wave-front geometry: an application to locate the nearby seismo-volcanic source;Almendros;Geophys. J. Int.,1999

2. Discriminative feature selection for automatic classification of volcano-seismic signals;Álvarez;Geosci. Rem. Sens. Lett. IEEE,2012

3. An automatic P-phase picking algorithm based on adaptive multiband processing;Álvarez;Geosci. Rem. Sens. Lett. IEEE,2013

4. Analysis of volcanic seismicity at Deception Island, Stromboli volcano and Mt. Etna using an automatic CHMM-based recognition method;Benítez,2009

5. Continuous HMM-based seismic-event classification at deception island, Antarctica;Benítez,2007

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3