Deformation Styles and Multi-Stage Evolution History of a Large Intraplate Strike-Slip Fault System in a Paleozoic Superimposed Basin: A Case Study From the Tarim Basin, NW China

Author:

Neng Yuan,Li Yong,Qi Jiafu,Ma Xiao,Zuo Liang,Chen Ping

Abstract

The complex deformation styles of large intraplate strike-slip fault systems in the multi-stage superimposed basin are hot topics worldwide. This article proposes structural models and evolution processes for such strike-slip fault systems in the Tarim Basin based on high-resolution 3D seismic data and deep wells. Our analyses reveal that strike-slip fault in the Tarim Basin formed with different structural styles in five tectonic layers from the Sinian to the Permian that accompanies the Sinian rift systems and uplift, the Lower–Middle Cambrian reversed faults and salt tectonics, the Ordovician fault-karst systems, the Silurian to the Carboniferous en-echelon transtensional faults, and the Permian volcanic structures. Influenced by the multi-tectonic layers and complex evolution history, the strike-slip faults performed as multi-layer flower structures and various fault types. The evolution history of paleo-uplifts also influenced the distribution characteristics of strike-slip faults, such as X, diamond, and V shapes in the Tabei uplift and T shapes in the Tazhong uplift. The strike-slip faults formed in late Cambrian stage were associated with unconformities, inverted structures, and growth strata in deep layers. The different tectonic evolution models of the Tabei and the Tazhong uplift were built, which shows pre-existing structures, the lithological combinations from the rift basin to the marine basin, and the change of regional tectonic stress from the Cambrian to Permian are controlling factors of the strike-slip fault systems. These models provide a new interpretation method for intraplate strike-slip fault systems worldwide.

Funder

Natural Science Foundation of Xinjiang Province

Xingjiang Uighur Autonomous Region Talent Project

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3