An improved method of GB-SAR phase unwrapping for landslide monitoring

Author:

Xiang Xia,Chen Chen,Wang Hui,Xing Cheng,Chen Jiankang,Zhu Hong

Abstract

The ground-based Synthetic Aperture Radar (GB-SAR) technique can be applied to the safety monitoring and early warning of geo-hazards, especially for monitoring displacement of various types of landslide masses. One of the key techniques of processing GB-SAR monitoring data is phase unwrapping, which can be dramatically affected by atmospheric humidity, atmospheric pressure, sampling interval, etc. In high mountains and valleys where environmental change is drastic, GB-SAR monitoring data is vulnerable to incoherence both spatially and temporally. Therefore, an improved phase unwrapping method of GB-SAR data for landslide monitoring is proposed in this paper, which can realize three-dimensional phase unwrapping in time and space. The method adopts the idea of sparse data processing and realizes phase unwrapping of monitoring data in two steps. Firstly, taking full advantage of the high temporal resolution of GB-SAR monitoring data, the one-dimensional phase unwrapping method in the spatial domain is applied to the time domain, and the interference phases of PS points are unwrapped in the time domain. Then, the PS network is constructed based on the time-phase unwrapping results, the double-difference phases of the network baselines are obtained and the spatial consistency adjustment is applied to them, and the spatial phase unwrapping can be realized by the indirect least square adjustment method. This method successfully solves the problem of path dependence, island isolation and large computation of the common method of space-borne SAR phase unwrapping, which can process GB-SAR data with high accuracy and efficiency.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Reference37 articles.

1. Number theory and bootstrapping for phase unwrapping;Abutaleb;IEEE Trans. Circuits Syst. I.,2002

2. Displacement patterns of a landslide affected by human activities: Insights from ground-based InSAR monitoring;Bozzano;Nat. Hazards (Dordr).,2011

3. Probabilistic cost functions for network flow phase unwrapping;Carballo;IEEE Trans. Geosci. Remote Sens.,2000

4. Research on deformation monitoring using InSAR technology;Chen;Sci. Surv. Mapp.,2006

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3