Mechanism of rockburst induced by roadway repair under intense mining: a case study

Author:

Ma Zhenkai,Zhao Xidong,Li Sheng

Abstract

Rockbursts involve a sudden failure of the coal and rock mass without any apparent macroscopic precursors, threatening the production safety of coal mines. Achieving precise prediction of potential seismic body of rockbursts and determining their inducing factors are essential for effective prevention and control of rockbursts. By investigating the “1.17” major roof accident in the Danshuigou mine, the distribution characteristics of potential high-energy seismic body in the accident roadway during multi-layer mining were studied, relationship between these characteristics and the surrounding rock damage was established, and mechanism of the high-energy seismic body-induced rockbursts in the roadway was elucidated. It was found that the repair of the roadway floor was a key factor inducing the rockburst occurrence, with multi-layer mining generating potential high-energy seismic body reaching energy densities up to 106 J/m3, resulting in roadway collapse and severe damage. Greater energy in these seismic body correlates with higher degrees of roadway impact damage. Moreover, higher energy accumulation in surrounding rock during roadway repairs leads to greater energy release. The triggering effects of roadway floor repair construction result in the instantaneous release of large elastic energy accumulated in ultrahigh-energy coal rock bodies, causing rock mass impact damage during triple mining. This study significantly contributes to understanding rockburst mechanisms and enhances the effectiveness of rockburst prediction and prevention.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3