The ∼170 kyr astronomical cycle in the Early Permian Lucaogou Formation of the Junggar Basin

Author:

Li Yuyin,Huang He,Gao Yuan,Cao Yongqiang,Cheng Hu,Hei Chenlu,Liang Shuang

Abstract

According to Milankovitch’s theory, periodic climate change in Earth’s history is controlled by the periodic changes in the Earth’s orbit and axis of rotation. Milankovitch cycle include eccentricity, obliquity, and precession cycles. In addition to them, there are also some amplitude modulation (AM) cycles that affect the climate system through a series of “nonlinear” feedback processes, such as the 173 kyr obliquity AM cycle. Previous studies have demonstrated that the ∼170 kyr cycle modulate the paleoclimate and carbon cycle at mid-high latitude regions in the Meso-Cenozoic. However, due to the limitation of astronomical solutions and the lack of high-resolution geological records, the ∼170 kyr cycle has been less reported in the Paleozoic Era. In this study, cyclostratigraphic analysis of natural gamma ray (GR) logging data from four wells (Ji30, Ji31, Ji32, and Ji174) and total organic carbon (TOC) data from well Ji174 penetrating the Early Permian Lucaogou Formation in Jimusar Sag, Junggar Basin suggests preservation of eccentricity, obliquity, and precession cycles, and the ∼170 kyr AM cycle. Through the astronomical tuning of GR logging data obtained from four wells to eccentricity target cycles, we established the floating astronomical time scale (ATS). The results indicate an average sedimentation rate ranging from 7.4 to 9.5 cm/kyr and a duration from 2.8 to 3.2 million years (Myr) for the Lucaogou Formation. The differences in sedimentation rate and duration among these four wells may result from different well locations. Moreover, the ∼170 kyr cycle signal has been identified in the detrended GR logging and TOC data series, and its obliquity AM series. This signal might be attributed to the obliquity AM cycles originated from the interaction between s3 and s6 (s3 and s6 represent the precession of nodes of Earth and Saturn), which was recorded in the GR logging and TOC data time series due to nonlinear responses within the depositional system.

Funder

Chengdu University of Technology

National Natural Science Foundation of China

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3