Author:
Fan Chaojun,Yang Lei,Wang Gang,Huang Qiming,Fu Xiang,Wen Haiou
Abstract
To reveal the evolution law of coal skeleton deformation during the process of CO2 flooding and displacing CH4 in coal seam, a fluid-solid coupling mathematical model of CO2 injection enhanced CH4 drainage was established based on Fick’s law, Darcy’s law, ideal gas state equation, and Langmuir equation. Meanwhile, numerical simulations were carried out by implementing the mathematical model in the COMSOL Multiphysics. Results show that the CH4 content of both regular gas drainage and CO2 enhanced gas drainage gradually decreases with time, and the decreasing rate is high between 10 and 60 days. Compared with regular gas drainage, the efficiency of CO2 enhanced gas drainage is more obvious with greater amount of CH4 extracted out. When coal seam gas is extracted for 10, 60, 120, and 180 days, CH4 content in coal seam is reduced by 5.2, 17.2, 23.6, and 26.7%, respectively. For regular gas drainage, the deformation of coal skeleton is dominated by the shrink of coal matrix induced by gas desorption, and the strain curve shows a continuous downward trend. For CO2 enhanced gas drainage, the strain curve of coal skeleton showed a decrease—rapid increase—slow increase trend. The evolution of permeability is opposite to the evolution of coal skeleton strain. Higher gas injection pressure will lead to a greater coal skeleton strain. The pumping pressure affects the deformation of coal skeleton slightly compared with that of initial water saturation and initial temperature. Greater initial water saturation leads to larger deformation of coal skeleton in the early stage. The strain value of coal skeleton gradually tends to be consistent as gas injection prolongs. Higher initial temperature leads to greater reduction in coal skeleton strain when the gas injection continues. Research achievements provide a basis for the field application of CO2 injection enhanced CH4 drainage in underground coal mines.
Subject
General Earth and Planetary Sciences
Cited by
47 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献