Investigation on Coal Skeleton Deformation in CO2 Injection Enhanced CH4 Drainage From Underground Coal Seam

Author:

Fan Chaojun,Yang Lei,Wang Gang,Huang Qiming,Fu Xiang,Wen Haiou

Abstract

To reveal the evolution law of coal skeleton deformation during the process of CO2 flooding and displacing CH4 in coal seam, a fluid-solid coupling mathematical model of CO2 injection enhanced CH4 drainage was established based on Fick’s law, Darcy’s law, ideal gas state equation, and Langmuir equation. Meanwhile, numerical simulations were carried out by implementing the mathematical model in the COMSOL Multiphysics. Results show that the CH4 content of both regular gas drainage and CO2 enhanced gas drainage gradually decreases with time, and the decreasing rate is high between 10 and 60 days. Compared with regular gas drainage, the efficiency of CO2 enhanced gas drainage is more obvious with greater amount of CH4 extracted out. When coal seam gas is extracted for 10, 60, 120, and 180 days, CH4 content in coal seam is reduced by 5.2, 17.2, 23.6, and 26.7%, respectively. For regular gas drainage, the deformation of coal skeleton is dominated by the shrink of coal matrix induced by gas desorption, and the strain curve shows a continuous downward trend. For CO2 enhanced gas drainage, the strain curve of coal skeleton showed a decrease—rapid increase—slow increase trend. The evolution of permeability is opposite to the evolution of coal skeleton strain. Higher gas injection pressure will lead to a greater coal skeleton strain. The pumping pressure affects the deformation of coal skeleton slightly compared with that of initial water saturation and initial temperature. Greater initial water saturation leads to larger deformation of coal skeleton in the early stage. The strain value of coal skeleton gradually tends to be consistent as gas injection prolongs. Higher initial temperature leads to greater reduction in coal skeleton strain when the gas injection continues. Research achievements provide a basis for the field application of CO2 injection enhanced CH4 drainage in underground coal mines.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Reference31 articles.

1. CO2-ECBM and CO2 Sequestration in Polish Coal Seam - Experimental Study;Baran;J. Sustainable Min.,2014

2. High-Pressure Adsorption of Methane, Carbon Dioxideand Their Mixtures on Coals with a Special Focus on the Preferential Sorption Behaviour;Busch;J. Geochem. Explor.,2003

3. The Impact of Depositional Environment and Tectonic Evolution on Coalbed Methane Occurrence in West Henan, China;Cao;Int. J. Min. Sci. Technol.,2019

4. Thermodynamics, Kinetics and Modeling of Sorption Behaviour of Coalbed Methane - A Review;Chattaraj;J. Unconv. Oil Gas Resour.,2016

5. Numerical Simulation of Deep Coalbed Methane Extraction Based on Fluid-Solid-thermal Coupling;Fan;J. China Coal Society,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3