Insight Into Hartoušov Mofette, Czech Republic: Tales by the Fluids

Author:

Daskalopoulou Kyriaki,Woith Heiko,Zimmer Martin,Niedermann Samuel,Barth Johannes A. C.,Frank Alexander H.,Vieth-Hillebrand Andrea,Vlček Josef,Bağ Cemile Dilara,Bauz Ralf

Abstract

The Cheb Basin (Czech Republic) is characterized by emanations of magma-derived gases and repeated occurrences of mid-crustal earthquake swarms with small to intermediate magnitudes (ML < 4.5). Associated intense mantle degassing occurs at the Hartoušov Mofette, a representative site for the Cheb Basin. Here, we performed 14 sampling campaigns between June 2019 and March 2020. Gas samples of fluids ascending in two boreholes (F1, ∼28 m depth and F2, ∼108 m depth) and from a nearby natural mofette were analyzed for their chemical (CO2, N2, O2, Ar, He, CH4, and H2) and isotope compositions (noble gases and CO2). CO2 concentrations were above 99.1% in most samples, while O2 and N2 were below 0.6%. He ranged from 19 to 34 μmol/mol and CH4 was mostly below 12 μmol/mol. Isotope compositions of helium and carbon in CO2 ranged from 5.39 to 5.86 RA and from −2.4 to −1.3 ‰ versus VPDB, respectively. Solubility differences of the investigated gases resulted in fluctuations of their chemical compositions. These differences were accompanied by observed changes of gas fluxes in the field and at the monitoring station for F1. Variations in solubilities and fluxes also impacted the chemical concentration of the gases and the δ13C values that were also likely influenced by Fischer-Tropsch type reactions. The combination of (a) the Bernard ratio, (b) CH4/3He distributions, (c) P-T conditions, (d) heat flow, and (e) the sedimentary regime led to the hypothesis that CH4 may be of mixed biogenic and volcanic/geothermal origin with a noticeable atmospheric contribution. The drilling of a third borehole (F3) with a depth of ∼238 m in August 2019 has been crucial for providing insights into the complex system of Hartoušov Mofette.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3