Volatile emissions from past eruptions at La Soufrière de Guadeloupe (Lesser Antilles): insights into degassing processes and atmospheric impacts

Author:

Metcalfe Abigail,Moune Séverine,Moretti Roberto,Komorowski Jean-Christophe,Aubry Thomas J.

Abstract

Volatiles exert a critical control on volcanic eruption style and in turn impact the near source environment and global climate. La Soufrière de Guadeloupe in the Lesser Antilles has been experiencing volcanic unrest since 1992, increasing to a peak in 2018. The lack of data available on volatiles from past eruptions, and the well-developed hydrothermal system makes understanding deep-released volatile behaviour challenging. In this study, we analyse new melt inclusions and shed light on the volatile lifecycle and impacts at La Soufrière de Guadeloupe. We focus on four eruptions: 1657 CE (Vulcanian), 1010 CE (Plinian), 341 CE (Strombolian) and 5680 BCE (Plinian), and compare to the well-studied 1530 CE (Sub-Plinian) eruption. The maximum volatile content of these eruption melt inclusions are: 4.42 wt% H2O, 1700 CO2 ppm, 780 ppm S, 0.36 wt% Cl and 680 ppm F. We observe a decrease in S content over time indicating the whole system is evolving by early separation of FeS, resulting in a lower S content in younger magma. Using the CHOSETTO v1 model, we modelled degassing paths related to decompression at low pressures, suggesting the majority of S degassing has occurred during magma ascent. We also calculate the SO2 emissions using the petrologic method, and while the 1657 CE, 1530 CE and 341 CE eruptions have negligible emissions (0.0001–0.001 Mt of SO2), the 1010 CE and 5680 BCE eruptions (0.2 Mt and 0.3 Mt of SO2, respectively) are greater. Using the SO2 emissions and plume height, we calculated the climate forcing associated with each event. The 1010 CE and 5680 BCE Plinian eruptions produced a peak global mean stratospheric aerosol optical depth (SAOD) of 0.0055 and 0.0062, respectively. This suggests, that even the largest eruptions of La Soufrière de Guadeloupe did not exert a significant climate forcing individually, but are important contributors to the volcanic stratospheric sulfate aerosol background resulting from relatively moderate but frequent explosive eruptions. Overall, this study provides new insights into degassing processes and climate forcing not only at La Soufrière de Guadeloupe, but also for other basaltic-andesitic, magmatic-hydrothermal systems. These new constraints are vital particularly if the volcano is currently in a state of unrest and will contribute to improving monitoring crisis management and long-term planning.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3