Characteristics of Plastic Greenhouse High-Temperature and High-Humidity Events and Their Impacts on Facility Tomatoes Growth

Author:

Zhang Qi,Zhang Xinyu,Yang Zaiqiang,Huang Qinqin,Qiu Rangjian

Abstract

Because of their relatively simple structures, plastic greenhouses in southern China have poor resistance to adverse external weather conditions. Adverse meteorological condition inside the greenhouse is one of the main limiting factors for facility crop production in southern China. Among them, high temperature and high humidity (HTHH) often co-occurred in greenhouses, inducing great losses. Tomatoes (Lycopersicon esculentum Mill.) are grown under protected environment worldwide. Here, characteristics of HTHH inside plastic greenhouses in southern China were analyzed and tomato was chosen as the sample facility crop to study the effects of HTHH. Daily maximum temperature and average relative humidity (RH) inside plastic greenhouses were simulated using the extreme learning machine (ELM) method to identify HTHH events. The results showed that the plastic greenhouse HTHH events mainly occurred from June to September in southern China, especially in the southernmost region. During 1990 and 2019, the occurrence times and accumulative days of the HTHH events showed a downward trend at 0.3 times/decade and 2.6 days/decade, respectively, which is mainly due to their reduction in July. HTHH affected the growth of tomato, in which high temperature plays a more important role than high RH. Days of flower bud differentiation was more sensitive to HTHH stress than other physiological indexes of tomato. With the increase of the return period of HTHH events, the corresponding losses of physiological indexes of tomato increased, except for the western region, where HTHH events rarely occurred. The results in this study could provide guidance for production and layout of greenhouse-grown tomato, and the research approach can also be applied to other greenhouse-grown crops and meteorological disasters.

Funder

National Key Research and Development Program of China

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3