Lightning Distribution in Tropical Cyclones Making Landfall in China

Author:

Zhang Wenjuan,Zhang Yijun,Shu Shoujuan,Zheng Dong,Xu Liangtao

Abstract

Lightning data from the World Wide Lightning Location Network (WWLLN) are used to document the lightning characteristics in tropical cyclones (TCs) making landfall in China. The landfall period is confined to 48 h prior to and after landfall (t-24∼t+24). Data from a total of 74 TCs are collected from 2010 to 2020, providing 3,293 individual time periods (1-h periods). To examine the radial and asymmetry distributions as a function of TC intensity, landing location, and vertical wind shear, the dataset is classified into two intensity categories, three shear groups, and four landing locations. WWLLN detected lightning activity in all TCs during the 48-h landfall, with lightning rates most frequently appearing between 250 and 600 str h−1. Extreme hourly lightning rates of 3,154 str h−1 and 4,426 str h−1 are observed in the inner core in Tropical Storm Cimaron (2013) and the outer rainbands in Severe Typhoon Matmo (2014), respectively, comparable to lightning activity in mesoscale convection systems on land. TCs landing in Guangdong and Hainan have the largest peak lightning rates, while those landing in Zhejiang and Shanghai show the lowest lightning rates. The maximum lightning density is found in the inner-core region of weak TCs (<32.7 m s−1) that are located approximately 100–200 km away from the coastline. The radial distribution of lightning density at landing stages is consistent with that at mature stages when TCs are over the ocean. However, there is a shift in the lightning maximum from the inner core prior to landfall (t-24∼t0) to the outer rainbands after landfall (t0∼t+24), indicating the effects of dry continental air intrusion and the enhanced surface frictional convergence. Vertical wind shear is the dominant factor in producing lightning and convective asymmetry for TCs landing in all locations. Lightning asymmetries are enhanced with the increase in shear magnitude from low (<5 m s−1) to moderate (5–10 m s−1) and high (>10 m s−1) shear environments, both in weak and strong TCs (≥32.7 m s−1).

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3