Geoelectrical and seismoelectric mapping of subsurface pollution in a closed landfill near the Tongo Bassa and Ngongue river, Douala Cameroon

Author:

Kevin Zebaze Djuka Mba,Yang Jidong,Djieto Lordon Anatole Eugene,Huang Jianping,Perabi Clotaire José Pako,Rapheal Onguene,Dirane Kengue Ngouene Jocelyn,Ahmed Mbouemboue Nsangou Moussa

Abstract

Located in Douala V (Cameroon), Makepé Missoké is a lowland area that is influenced by the Tongo Bassa and Ngongué rivers. The site has a closed dumpsite, that operated from the 1975’s to 2003 for the disposal and storage of domestic waste produced in Douala. Geoelectric profiling (ERT) coupled with seismo-electric imaging was used to characterize the shallow aquifer of the Douala subbasin and map subsurface pollution. Fourteen geoelectrical profiles were deployed between June and August 2018 and March 2019. Along these lines, 49 sets of seismo-electric point data were collected in December 2021. A total of 118 wells drilled (2018) were used to obtain water level and topographic data. The aquifer geometry, hydraulic characteristics, permeability, lithology and leachate plume extent were determined. This survey enables us to visualize waste infiltration and migration within Makepé. The drilled wells indicate that the main lithologies observed are clay, sandy clay, sand, clayey sand and gravel. The leachate plume observed after processing the electric profiles had a resistivity signature of ≤ 10 Ωm, and high electrical conductivity are observed in some wells. The leachate migrates within the subsurface along a northwest‒southwest trend, where ground water pollution is observed due to leachate infiltration. This infiltration resulted in poor water quality indices in some collected samples. Such pollution is common in unconfined aquifers (< 50 m) due to the absence of a confining layer at the landfill. An increase in resistivity values with depth toward the northeast direction indicates progressive vertical dilution during leachate mineralization. This study integrated geoelectric and seismo-electric tomography with basic water chemistry analysis to effectively characterize the groundwater within the phreatic Quaternary/Mio-Pliocene aquifers of the Douala basin.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3