Overpressures Induced by Compaction Disequilibrium Within Structural Compartments of Murree Formation, Eastern Potwar, Pakistan

Author:

Amjad Muhammad Raiees,Zafar Muhammad,Ahmad Tausif,Hussain Muyyassar,Shakir Urooj

Abstract

Overpressure conditions in Potwar Basin of Pakistan pose significant drilling and completion problems. Specifically, in eastern Potwar, abnormally high pressures are observed within structural compartments of Murree Formation of Neogene age. Compaction disequilibrium and tectonic stresses are considered as two major factors, controlling pore pressures in this foreland basin. Undercompaction of sediments due to high sediment influx affects the porosity-depth relationship as the rock deviates from the normal compaction trend. Demarcation of structural geometries is critical in understanding abnormal pressure conditions within thick molasse deposits of Murree Formation. Eastern Potwar is divided into three zones on the basis of structural geometries, including duplex thrust sheets, salt-cored anticlines, and triangular zones. Geohistory analysis and pore pressure prediction have been performed for determining the overpressuring mechanism. Log-based pressure prediction in different oil fields of eastern Potwar depicts anomalous pressure conditions in some of the wells. High-sedimentation rate during Miocene times resulted in a low porosity reduction rate due to the inability of fluid to escape out of the pores. Eaton’s method was used to predict the pore pressure, and these pressure curves were calibrated against measured pressure to validate the results. Pressures predicted in Qazian-1X well showed very good correlation with measured pressure data. Most of the wells with overpressure intervals exhibited high porosity values, showing deviation from the normal compaction trend. This pressure prediction revealed that compaction disequilibrium is the primary cause of overpressure conditions within Murree Formation, resulted in response to the rapid rate of sedimentation. The deformation mechanism and presence of different structural geometries also contributed in the development of abnormal pressures.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3