A Relative Paleointensity (RPI)-Calibrated Age Model for the Corinth Syn-rift Sequence at IODP Hole M0079A (Gulf of Corinth, Greece)

Author:

Maffione Marco,Herrero-Bervera Emilio

Abstract

The Corinth basin (Greece) is a young continental rift that recorded cyclic basin paleoenvironment variations (i.e., marine to lacustrine) caused by glacio-eustatic sea level fluctuations during its initial connection to the global oceans. The Corinth syn-rift sequence offers therefore a unique opportunity to determine the timing and modality of connection of young rifts to the global oceans, and investigate how sediment supply change during this extremely dynamic stage of their evolution. Here we use magnetostratigraphic and relative paleointensity (RPI) constraints from 885 discrete samples from International Ocean Discovery Program (IODP) Hole M0079A to generate an unprecedented high-resolution (∼15kyr) age model for the youngest part of the Corinth’s offshore syn-rift sequence. Our RPI-calibrated age model spans the last ∼850 kyr and reveals that initial connection of the Corinth basin to the Mediterranean Sea occurred at ∼530 ky, more recently than previously thought and after a short-lived marine incursion at ∼740 kyr. Accumulation rates calculated from our age model indicate two significant changes in sediment supply at 530 (from 74 to 156 cm/kyr on average) and 70 ka (from 156 to 258 cm/kyr on average), interpreted as due to increased local fault activity in the southern margin of the Corinth basin. Sedimentation rates also display a short-term variation indicating a lower sediment supply (98 cm/kyr on average) during interglacial periods and a higher input (156 cm/kyr on average) during glacial periods. We conclude that long-term variations of sediment supply in young rifts connecting to the global oceans are predominantly controlled by local tectonics (i.e., new depocenters formation), while short-term variations may be driven by global climate (i.e., increased erosion aided by fewer vegetation during glacial periods). Grain size of the Corinth syn-rift sequence shows a weak correlation with glacial cycles too (i.e., coarser sediments during interglacials), but we suggest this to be controlled by the hydrodynamics of the basin (i.e., stronger bottom currents when the basin was connected to the Mediterranean Sea during interglacial periods).

Funder

H2020 Marie Skłodowska-Curie Actions

Natural Environment Research Council

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3