The influence of fluid inclusions, organics, and calcite fabric on trace element distributions in stalagmites

Author:

Kost O.,Sliwinski J.,Gies N.,Lueder M.,Stoll H.

Abstract

Trace elements and calcite fabrics in stalagmites are increasingly employed as indicators of past environmental conditions. The drivers of trace element concentrations and fabrics reflect a complex interplay of factors during crystal growth, and accurate interpretation of geochemical proxies requires a clear understanding of the incorporation of the proxy signal in the stalagmite. We employ a series of non-destructive techniques to compare the spatial distribution of water, organic components, and trace elements and in relationship with calcite fabrics, and evaluate if these distributions are consistent with recent hypotheses about controlling factors on crystal fabrics, fluid inclusions, and element incorporation. We use for the first time Fourier Transformation Infrared Focal-Plane Array (FTIR-FPA) imaging to show the distribution of molecular water (3,400 cm−1 absorbance) and organic matter (2,983 cm−1) in calcite. To test if entrapped water in speleothem calcite affects the abundance or distribution of trace elements, the element distribution (Na, Mg, Sr, U, Al, Y, and Zn) is mapped by Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS). Transmitted Light Microscope imaging constrains crystal fabrics. We find that stalagmite areas with strong Organic Matter fluorescence via Confocal Laser Scanning Microscopy coincide with areas of high Fourier Transformation Infrared absorbance at 2,983 cm−1, suggesting common co-location of multiple organic matter types in the stalagmite. While microscopic fluid inclusions visible in transmitted light are also detected by FTIR 3400 cm−1 absorbance, the FTIR additionally detects submicroscopic fluid inclusions, but not evident in transmitted light microscopy. In most samples, Na concentration is elevated in regions of high fluid inclusion density, suggesting that a significant portion of Na may be hosted in entrapped water rather than in the calcite. Only samples with 100-fold higher Y, feature Na concentrations which appear dominated by coupled Y-Na substitution and little influenced by fluid inclusion hosted Na. Our analysis provides new evidence of the influence of fluid inclusions on trace element content of stalagmites and illustrates the utility of several non-destructive imaging techniques to improve interpretations of proxy signals based on trace elements.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3