Evidence of Hydrocarbon Generation and Overpressure Development in an Unconventional Reservoir Using Fluid Inclusion and Stable Isotope Analysis From the Early Triassic, Western Canadian Sedimentary Basin

Author:

Kingston Andrew,Ardakani Omid H.,Watt Elizabeth,Samson Iain M.

Abstract

Deep burial of sedimentary basins results in the development of complex diagenetic environments influenced by pressure, temperature, and metasomatic chemical processes. Fracture systems resulting from deep tectonic-related burial can provide archives of physio-chemical characteristics during burial helping unravel diagenetic events such as hydrocarbon migration and paleobarometry. The Early Triassic Montney Formation in the Western Canadian Sedimentary Basin is a highly productive unconventional hydrocarbon reservoir that has undergone multiple phases of tectonic-related burial and uplift resulting in the formation of a series of calcite-filled fracture systems. These fracture systems occur as vertical to sub-vertical fractures, brecciated zones, and horizontal bedding-plane parallel fractures that are rich in co-occurring, but not co-genetic aqueous and petroleum fluid inclusion assemblages. Fluid inclusion microthermometry, Raman spectroscopy, and stable isotope analysis of these fracture systems and host rock reveals paleobarometric and temperature conditions during fracture formation. Vertical fractures formed at temperatures exceeding 142°C during peak burial associated with the Laramide orogeny ∼50 Ma. Similarities in modeled oxygen isotope values of calcite parent fluids and pore water implicate locally sourced carbonate in fracture calcite. Therefore, low permeability and closed system-like conditions were prevalent throughout initial fracture formation and cementation. Petrographic analysis of brecciated and horizontal fractures show evidence of hydrocarbon generation and migration into fracture-filling calcite. Modeling of petroleum inclusion paleobarometry indicates entrapment pressures approaching or even exceeding lithostatic pressure consistent with the development of overpressure associated with the thermal maturation of organic matter following peak burial. Combined use of aqueous and petroleum fluid inclusions in this deeply buried sedimentary system offers a powerful tool for better understanding diagenetic fluid flow, the timing of hydrocarbon migration/maturation, and helps constrain the pressure-temperature history important for characterizing economically important geologic formations.

Funder

Natural Resources Canada

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Reference89 articles.

1. The Effect of Hydrothermal Fluid Flow on Early Diagenetic Dolomitization: an Example from the Devonian Slave Point Formation, Northwest Alberta, Canada;Al-Aasm,2004

2. Fluid Compartmentalization of Devonian and Mississippian Dolostones, Western Canada Sedimentary Basin: Petrologic and Geochemical Evidence from Fracture Mineralization;Al-Aasm;Can. J. Earth Sci.,2019

3. Combined Use of Confocal Laser Scanning Microscopyand PVT Simulation for Estimating the Composition Andphysical Properties of Petroleum in Fluid Inclusions;Aplin;Mar. Petroleum Geol.,1999

4. Organic Matter in the Alberta Montney Re-visited: Evidence for Primary Organic Matter and Local Hydrocarbon Migration;Ardakani;Geoconvention

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3