Impacts of moisture supply from the subtropical western Pacific on the subtropical high and the atmospheric river during the heavy rain of 2020 in Japan

Author:

Zhao Ning,Manda Atsuyoshi,Guo Xiaojun,Wang Bin

Abstract

Our recent study suggested that moisture from the subtropical Western Pacific (WP) contributed the most to an atmospheric river (AR) event and the related heavy rainfall during the heavy rain of 2020 in Japan based on a Lagrangian approach. However, the actual role of moisture from the subtropical WP region in the AR and heavy rain formations remains unclear. To evaluate that, we conducted a set of numerical sensitivity experiments by adjusting the surface moisture supply over the subtropical WP region with factors of 0%, 50%, and 200%. The sensitivity experiments suggest that the reduced surface evaporation over the subtropical WP suppressed the local convective activity and decreased moisture content in the whole troposphere, leading to shallow and weak positive geopotential height anomalies. Although the slightly strengthened WP subtropical High (WPSH) and related anomalous anticyclonic circulation enhanced the southwesterly wind, convective activities along the Meiyu-Baiu front were still weakened due to the largely reduced moisture supply, resulting in another anomalous anticyclonic circulation over Japan but had much stronger and deeper structures. These two anomalous circulations and the reduced moisture modulated the AR over Japan, which eventually caused the weakened rainfalls and the northward migration of the rainband. By contrast, larger surface evaporation enhanced the local convective activities and weakened the dominant WPSH, resulting in the weakening and the southward migration of the AR. Overall, this study confirmed the large contributions of moisture supply from the subtropical WP region to the AR and related precipitation over Japan during the record-breaking Meiyu-Baiu season in 2020 via both dynamic and thermodynamic influences. In addition, it reveals that, although larger evaporation over the WP region would increase the total rainfalls but would not have led to more several rainfalls over certain regions, such as the relatively small Kyushu Island.

Funder

Ministry of Education, Culture, Sports, Science and Technology

Japan Society for the Promotion of Science

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3