Nanoscale pore characteristics of the Jurassic Dongyuemiao member lacustrine shale, Eastern Sichuan Basin, SW China: Insights from SEM, NMR, LTNA, and MICP experiments

Author:

Zhou Yadong,Wang Zhanlei,Hu Dongfeng,Wei Zhihong,Wei Xiangfeng,Liu Ruobing,Wang Daojun,Jiang Yuqiang

Abstract

The Jurassic Dongyuemiao Member is the most promising target for lacustrine shale gas exploration in Sichuan Basin. By integrating SEM, NMR, LTNA, and MICP experiments, and other basic measurements, the nanoscale pore category and structure and the corresponding controlling factors of Dongyuemiao lacustrine shale in Eastern Sichuan Basin are studied. The results denote that organic pores comprise primary pores within plant debris and secondary pores within bitumen. Inorganic pores are composed of intraparticle pores within calcite particles, intercrystalline pores between pyrite crystals, and interparticle pores between different minerals. The 4th Section lacustrine shale of Dongyuemiao Member has the best pore structure, exhibiting high organic pore proportion, large amounts of gas adsorption, and parallel plate-shaped pore morphology. Micropores (<2 nm) are the main contributors of the pore volume and surface area of Dongyuemiao lacustrine shale. Moreover, the enrichment of organic matter positively affects the formation of micropores and has no influence on the mesopore–macropore (>2 nm). Quartz does not significantly affect the nanoscale pore formation. The intraparticle pores within calcite particles constitute part of mesopore–macropore but not micropores. Clay minerals are conducive to the formation of micropores but play a negative role in the formation of mesopore–macropore.

Funder

National Natural Science Foundation of China

National Major Science and Technology Projects of China

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3