Seafloor Density Contrast Derived From Gravity and Shipborne Depth Observations: A Case Study in a Local Area of Atlantic Ocean

Author:

Wan Xiaoyun,Han Weipeng,Ran Jiangjun,Ma Wenjie,Annan Richard Fiifi,Li Bing

Abstract

Marine gravity data from altimetry satellites are often used to derive bathymetry; however, the seafloor density contrast must be known. Therefore, if the ocean water depths are known, the density contrast can be derived. This study experimented the total least squares algorithm to derive seafloor density contrast using satellite derived gravity and shipborne depth observations. Numerical tests are conducted in a local area of the Atlantic Ocean, i.e., 34°∼32°W, 3.5°∼4.5°N, and the derived results are compared with CRUST1.0 values. The results show that large differences exist if the gravity and shipborne depth data are used directly, with mean difference exceeding 0.4 g/cm3. However, with a band-pass filtering applied to the gravity and shipborne depths to ensure a high correlation between the two data sets, the differences between the derived results and those of CRUST1.0 are reduced largely and the mean difference is smaller than 0.12 g/cm3. Since the spatial resolution of CRUST1.0 is not high and in many ocean areas the shipborne depths and gravity anomalies are much denser, the method of this study can be an alternative method for providing seafloor density variation information.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Reference31 articles.

1. Improved Arctic ocean bathymetry derived from DTU17 gravity model.;Abulaitijiang;Earth Space Sci.,2019

2. The DTU10 gravity field and mean sea surface;Andersen;Proceedings of the Second International Symposium of the Gravity Field of the Earth (IGFS2),2010

3. The DNSC08GRA global marine gravity field from double retracked satellite altimetry.;Andersen;J. Geod.,2010

4. Global and Arctic marine gravity field from recent satellite altimetry (DTU13);Andersen;Proceedings 76th EAGE Conference and Exhibition 2014,2014

5. Mapping seafloor topography of Gulf of Guinea using an adaptive meshed gravity-geologic method.;Annan;Arab. J. Geosci.,2020

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3