Color Reflectance of Coastal Sediments in the South Bohai Sea and its Implication to Orbital Forcing of East Asian Summer Monsoon

Author:

Li Yibing,Chen Yanping,Jiang Xingyu,Yi Liang

Abstract

There are two distinct variabilities of the East Asian summer monsoon (EASM) on orbital timescales observed in different proxies, and the forcing mechanisms between them are hotly debated. One of the ways to reconcile the debate is to present a geological archive recording two cycles in dominance and somehow in equivalence. In this work, we retrieved an EASM record by studying color reflectance of coastal sediments in the south Bohai Sea, East Asia. The leading component of reflectance derivative spectra accounts for 58.9% variance in total and its loading spectrum can be well correlated to that of mineral assemblages of illite and goethite. For this monsoonal record, orbital variabilities in precession and eccentricity bands are highlighted. By comparing this monsoonal record to previously published proxies, it is speculated that the spectral difference in the sediments of the south Bohai Sea and between various proxies in the EASM domain may indicate an integrated forcing of solar insolation and ice-sheet evolution in the late Quaternary. Overall, the monsoonal record in the Bohai Sea offers an opportunity to fill the gap of the diverse periodicities between various proxies, which is critical to extending our understanding of the EASM on orbital timescales.

Funder

Natural Science Foundation of Shanghai

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Reference69 articles.

1. The Long-Term Paleomonsoon Variation Recorded by the Loess-Paleosol Sequence in Central China;An Zhisheng;Quat. Int.,1990

2. Insolation Values for the Climate of the Last 10 Million Years;Berger;Quat. Sci. Rev.,1991

3. Approximate Co-location of Precipitation and Low-Level Westerlies in Tropical Monthly Means;Chao,1999

4. The Origin of Monsoons;Chao;J. Atmos. Sci.,2001

5. Multiple Quasi Equilibria of the ITCZ and the Origin of Monsoon Onset;Chao;J. Atmos. Sci.,2000

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3