Estimation of the dolomite content of carbonate rock outcrops based on spectral knowledge and machine learning

Author:

Wei Wei,Shao Yanlin,Hu Zhonggui,Wang Qing,Deng Fan,Huang Yu,Zhao Kunpeng

Abstract

Accurately estimating the dolomite content in carbonate rocks is crucial for optimizing oil and gas exploration and production strategies. Hyperspectral techniques for estimating dolomite content have advantages in terms of efficiency, cost-effectiveness, and non-destructiveness compared with traditional laboratory methods. Despite the abundance of hyperspectral data, feature selection and extraction remain challenging. In this study, hyperspectral data collected from surface outcrop in the field using the analytical spectral device (ASD) were applied to construct model for estimating dolomite content. Firstly, the data were preprocessed via outlier analysis and continuum transformation. Next, a hybrid approach integrating spectral knowledge with machine learning was proposed and applied to facilitate efficient and precise feature selection of the hyperspectral data; in this approach, preliminary screening based on spectral knowledge is followed by further hyperspectral data feature selection using a random forest algorithm. The selected features were then combined using a support vector regression algorithm to obtain the estimation model. Finally, the accuracy of the model was evaluated using the hyperspectral data from field outcrop samples. To further verify the effectiveness of this method, various combinations of eight input variables and four machine learning algorithms were compared. Among all combinations, our model achieved the highest accuracy with a test R2 value of 0.91 and a root-mean-square error of only 0.122. The proposed method is practical and efficient and provides precise quantitative data for field geologists to identify the mineral distribution in outcrops. Thus, our method provides robust support for understanding reservoir characteristics and has significant practical value in geological surveys and mineral exploration.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3