Seismic architecture of Yongle isolated carbonate platform in Xisha Archipelago, South China Sea

Author:

Liu Gang,Wu Shiguo,Gao Jinwei,Zhang Hanyu,Han Xiaohui,Qin Yongpeng,Tian Liyan,Chen Wanli,Huang Xiaoxia

Abstract

This study presented recently reprocessed multi-channel seismic data and multi-beam bathymetric map to reveal the geomorphology and stratigraphic architecture of the Yongle isolated carbonate platform in the Xisha Archipelago, northwestern South China Sea. Our results show that the upper slope angles of Yongle carbonate platform exceed 10° and even reach to ∼32.5° whereas the lower slope angles vary from .5° to 5.3°. The variations of slope angles show that margins of Yongle Atoll belong to escarpment (bypass) margins to erosional (escarpment) margins. The interior of carbonate platform is characterized by sub-parallel to parallel, semi-continuous to continuous reflectors with medium-to high-amplitude and low-to medium-frequency. The platform shows a sub-flat to flat-topped shape in its geometry with aggradation and backstepping occurring on the platform margins. According to our seismic-well correlation, the isolated carbonate platform started forming in Early Miocene, grew during Early to Middle Miocene, and subsequently underwent drowning in Late Miocene, Pliocene and Quaternary. Large-scale submarine mass transport deposits are observed in the southeastern and southern slopes of Yongle Atoll to reshape the slopes since Late Miocene. The magmatism and hydrothermal fluid flow pipes around the Yongle Atoll have been active during 10.5–2.6 Ma. Their activity might intensify dolomitization of the Xisha isolated carbonate platforms during Late Miocene to Pliocene. Our results further suggest that the Yongle carbonate platform is situated upon a pre-existing fault-bounded block with a flat pre-Cenozoic basement rather than a large scale volcano as previously known and the depth of the basement likely reached to 1400 m, which is deeper than the well CK-2 suggested.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3