Active degassing of crustal CO2 in areas of tectonic collision: A case study from the Pollino and Calabria sectors (Southern Italy)

Author:

Randazzo Paolo,Caracausi Antonio,Aiuppa Alessandro,Cardellini Carlo,Chiodini Giovanni,Apollaro Carmine,Paternoster Michele,Rosiello Angelo,Vespasiano Giovanni

Abstract

Carbon dioxide (CO2) is released from the Earth’s interior into the atmosphere through both volcanic and non-volcanic sources in a variety of tectonic settings. A quantitative understanding of CO2 outgassing fluxes in different geological settings is thus critical for decoding the link between the global carbon budget and different natural processes (e.g., volcanic eruption and earthquake nucleation) and the effects on the climate evolution over geological time. It has recently been proposed that CO2 degassing from non-volcanic areas is a major component of the natural CO2 emission budget, but available data are still sparse and incomplete. Here, we report the results of a geochemical survey aimed at quantifying CO2 emissions through cold and thermal springs of the tectonically active Pollino Massif and Calabrian arc (Southern Italy). The chemical ad isotopic (He and C) composition of fifty-five dissolved gas samples allows to identify two different domains: 1) a shallow system dominated by gas components of atmospheric signature (helium, hereafter He) and biogenic origin (C), and 2) a deeper system in which crustal/deep fluids (CO2 and He) are dominant. The measured He isotope ratios range from 0.03 to 1.1 Ra (where Ra is the He isotopic ratio in the atmosphere) revealing a variable atmospheric contamination. Furthermore, the He isotopic data indicate the presence of traces of mantle He contributions (2%–3%) in the thermal groundwater. The prevailing low R/Ra values reflect the addition of crustal radiogenic 4He during groundwater circulation. Using helium and carbon isotope data, we explore the possible sources of fluids and the secondary processes (dissolution/precipitation) that act to modify the chemistry of pristine volatiles. For the thermal springs, we estimate a deep C output of 2.3 x 107 to 6.1 x 108 mol year−1. These values correspond to deep CO2 fluxes per square km comparable with those estimated in several active and inactive volcanic areas and in continental regions affected by metamorphic CO2 degassing (e.g., the southern margin of the Tibetan Plateau).

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Reference170 articles.

1. Palaeozoic sequences and evolution of the calabrian-peloritan arc (southern Italy);Acquafredda;Terra nova.,1994

2. CO2 flux emissions from the Earth's most actively degassing volcanoes, 2005–2015;Aiuppa;Sci. Rep.,2019

3. Note illustrative della Carta idrogeologica dell’Italia meridionale. [Illustrative notes of the Hydrogeological map of southern Italy]. Istituto Poligrafico e Zecca dello Stato, ISBN 88-448-0215-5 (p. 211), ISBN 88-448-0223-6 (3 maps included);Allocca,2007

4. L’arco calabropeloritano nell’orogene appenninico-magrebide;Amodio Morelli;Mem. Soc. Geol. It,1976

5. Vard`e, M., Fuoco, I., Barca, D., Bloise, A., Miriello, D., Cofone, F., Servidio, A., De Rosa, RComparative geochemical study between the tap waters and the bottled mineral waters in Calabria (southern Italy) by compositional data analysis (CoDA) developments;Apollaro;Appl. Geochem.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3