Mechanism of Faster CH4 Bubble Growth Under Surface Waves in Muddy Aquatic Sediments: Effects of Wave Amplitude, Period, and Water Depth

Author:

Painuly Abhishek,Katsman Regina

Abstract

Methane (CH4) transport from organic-rich fine-grained (muddy) shallow aquatic sediments to water column is mediated dominantly by discrete bubbles, which is an important natural source of greenhouse CH4. The lifespan of these bubbles within the sediment comprises two successive stages: growth from nucleation up to a mature size and then buoyant ascent toward the sediment–water interface. Bubbles often experience an oscillating overburden load due to the passage of winds and/or storm-induced short period surface waves or long-period tides, which can potentially affect both stages of the bubble’s lifespan. However, little is known about the wave effects over bubble growth phase. In the present work, this subject is investigated using a numerical single-bubble mechanical/solute transport model, which quantifies the effects of different parameters (amplitude and period) of the wave loading and of the water depth, over the bubble growth pattern in sediments and its specific characteristics. It was found that bubbles induce early sediment fracturing in the presence of waves, attributed to the low overburden load appearing at wave troughs. Bubbles at shallow depth rapidly grow at wave troughs by inducing multiple intense fracturing events. However, this ability decreases with an increasing water depth because of a slower solute influx. In the presence of waves, bubbles mature in shorter time, whose contrast to the no wave case is controlled by the ratio of wave amplitude to equilibrium water depth. Due to the higher frequency of occurrence of wave troughs for shorter-period waves, bubble growth is accelerated compared with the case of longer-period waves. Overall, our modeling suggests that the fastest bubble growth can be predicted for higher amplitude, short-period waves traveling in shallow water. We further infer that accelerated bubble growth, along with subsequent wave-induced ascent can sufficiently shorten the bubble’s total lifespan in sediment, which explains the observed episodic in situ ebullitions correlated with wind- or storm-induced waves.

Funder

Israel Science Foundation

United States-Israel Binational Science Foundation

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3