Genesis of Permian granitoids in the southeast of Inner Mongolia and their response to the Xing’an-Mongolia orogenic belt evolution: constraints from zircon U-Pb age, geochemistry and Hf isotopes

Author:

Xue Xiaogang,Zhang Peng,Chen Guoqiang,Zhang Haihong,Zhang Xuebin

Abstract

Research on the geological process of the Xing’an - Mongolia Orogenic Belt has attracted the attention of scholars both domestically and internationally. Its genesis and tectonic location may help revealing the geological processes asscoaited with the evolution of the Xing’an - Mongolia Orogenic Belt. This study focuses on the development of the Permian granitic complex in Jielin Ranch, and we conduct systematic geological, petrographic, zircon U-Pb chronology, Hf isotope, and geochemical tracing of rock elements for evidence. The results show that the granitic complex is mainly composed of monzogranite and syenogranite, which obtained zircon U-Pb ages of 291.1 ± 1.1 Ma and 260.8 ± 1.1 Ma, respectively. The monzogranite and syenogranite are all acidic and aluminum rich rocks, and the monzogranite is a potassium rich, high potassium calcium alkaline rock series with relatively low REE content, high degree of fractionation, and insignificant europium anomalies, enriched with LILE (Rb, Th, U, K), deficient elements such as Ba, Sr, Nb, Ti, and P, εHf(t) values are from +4.1 to +7.0 (TDM2=1130–920 Ma). Geochemistry shows that the monzogranite belongs to high fractionation of I-type granite, which formed in a subduction-compressional or extension tectonic environment, and Middle Neoproterozoic lower crust rocks as the major source material of magma. The syenogranite is a potassium high potassium transitional rock series with a high rare earth content (214 × 10−6∼325 × 10−6), low LREE/HREE (2.54–6.41), δEu (0.04–0.15) and the typical “four component effect” fractionation mode is enriched in large ion lithophilic elements such as Rb, Th, K, and strongly depleted in elements such as Ba, Sr, Nb, Ta, Ti, P, εHf(t) values are from +4.2 to +8.6 (TDM2=738–1228 Ma), suggesting the characteristics of an “A2 type” granite. The magma originated from partial melting of the lower crust of the Middle and Neoproterozoic with the participation of mantle derived melts, and was formed in a back-arc extensional environment. This suggests that the study area experienced a subduction-compressional or extension tectonic environment during the early Permian and a brief backarc extension process in the late Permian.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3