Characteristics of two different types of thunderstorms in summer over the Nagqu area in China

Author:

Yan Zhitao,Zhou Yunjun,Hui Lei

Abstract

To investigate further the characteristics of thunderstorms on the Qinghai–Tibet plateau, a plateau vortex (PV) thunderstorm and a local thermoconvective (TC) thunderstorm over the Nagqu area are analyzed using cloud-radar, microwave-radiometer, and raindrop-spectrometer data, and their macrophysical and microphysical evolution characteristics are discussed in terms of thermodynamic processes, microphysical processes, and lightning activities. The results show the following. 1) The cloud layer was deeper in the PV thunderstorm, but the TC thunderstorm had a stronger short-time updraft with a radial velocity exceeding 10 m/s, and the warming from the strong updraft action and latent heat release from the hydromorphic phase change was about twice that of the PV thunderstorm. 2) The water vapor density increased significantly when the thunderstorm cloud passed, and the liquid water content in the middle and lower layers exceeded 4 g/m3. The maximum ice water content in the TC thunderstorm was twice bigger than that in the PV thunderstorm. The trends of raindrop number concentration and rain intensity of the PV thunderstorm were similar, and the average particle size of raindrops was smaller than that of the TC thunderstorm. 3) Both types of thunderstorms accounted for more than 90% of negative cloud-to-ground (CG) lightning, and the regions with black-body temperature (TBB) less than −40 °C and a larger TBB gradient were more favorable for the occurrence of CG lightning. 4) Thermodynamic fields bring water vapor and lift for microphysical processes, and microphysical changes release latent heat to enhance the dynamic effects, which together promote the development of lightning activities. The peak radial velocity and ice-phase particle concentration were more than 10 min ahead of the active peak of the CG lightning. This study reveals the macrophysical and microphysical evolution characteristics of different types of thunderstorms and provides a certain scientific basis for disaster prevention and mitigation regarding thunderstorms over the Nagqu area.

Funder

Institute of Atmospheric Physics, Chinese Academy of Sciences

National Natural Science Foundation of China

Sichuan Province Science and Technology Support Program

Science and Technology Program of Guizhou Province

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3