Acoustic Predictors of Active Fluid Expulsion From a Hydrothermal Vent Field, Offshore Taupō Volcanic Zone, New Zealand

Author:

Spain Erica,Lamarche Geoffroy,Lucieer Vanessa,Watson Sally J.,Ladroit Yoann,Heffron Erin,Pallentin Arne,Whittaker Joanne M.

Abstract

Understanding fluid expulsion is key to estimating gas exchange volumes between the seafloor, ocean, and atmosphere; for locating key ecosystems; and geohazard modelling. Locating active seafloor fluid expulsion typically requires acoustic backscatter data. Areas of very-high seafloor backscatter, or “hardgrounds,” are often used as first-pass indicators of potential fluid expulsion. However, varying and inconsistent spatial relationships between active fluid expulsion and hardgrounds means a direct link remains unclear. Here, we investigate the links between water-column acoustic flares to seafloor backscatter and bathymetric metrics generated from two calibrated multibeam echosounders. Our site, the Calypso hydrothermal vent field (HVF) in the Bay of Plenty, Aotearoa/New Zealand, has an extensive catalogue of vents and seeps in <250 m water depth. We demonstrate a method to quantitatively link active fluid expulsion (flares) with seafloor characteristics. This allows us to develop predictive spatial models of active fluid expulsion. We explore whether data from a low (30 kHz), high (200 kHz), or combined frequency model increases predictive accuracy of expulsion locations. This research investigates the role of hardgrounds or surrounding sediment cover on the accuracy of predictive models. Our models link active fluid expulsion to specific seafloor characteristics. A combined model using both the 30 and 200 kHz mosaics produced the best results (predictive accuracy: 0.75; Kappa: 0.65). This model performed better than the same model using individual frequency mosaics as input. Model results reveal active fluid expulsion is not typically associated with the extensive, embedded hardgrounds of the Calypso HVF, with minimal fluid expulsion. Unconsolidated sediment around the perimeter of and between hardgrounds were more active fluid expulsion sites. Fluids exploit permeable pathways up to the seafloor, modifying and refashioning the seafloor. Once a conduit self-seals, fluid will migrate to a more permeable pathway, thus reducing a one-to-one link between activity and hardgrounds. Being able to remotely predict active and inactive regions of fluid expulsion will prove a useful tool in rapidly identifying seeps in legacy datasets, as well as textural metrics that will aid in locating nascent, senescent, or extinct seeps when a survey is underway.

Funder

Australian Research Council

Royal Society Te Apārangi

Ministry for Business Innovation and Employment

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Reference82 articles.

1. SonarScope ® Software On-Line Presentation AugustinJ.-M. 2016

2. U-th Stratigraphy of a Cold Seep Carbonate Crust;Bayon;Chem. Geology.,2009

3. GRADISTAT: a Grain Size Distribution and Statistics Package for the Analysis of Unconsolidated Sediments;Blott;Earth Surf. Process. Landforms,2001

4. Distribution of Surficial Sediments in the Ocean Around New Zealand/Aotearoa. Part B: continental Shelf;Bostock;New Zealand J. Geology. Geophys.,2018

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3