Study on the permeability coefficient model of salinized frozen soil based on unfrozen water content curve

Author:

Liu Gunag,Zhang Zhilong,Cheng Zhe,Hao Ge,Hao Yufeng,Fu Ting

Abstract

Due to the fact that the permeability coefficient of salinized frozen soil is difficult to measure through experimental test, this paper develops a model of the permeability coefficient of salinized frozen soil by using SFCC curves, which takes into account the effects of velocity slip on pore wall and seepage of unfrozen water film. This model is on the basis of capillary bundle model, and combines with phase diagram theory of water-salt binary system. For the silty clay from Qinghai-Tibet Plateau and silts from Onedia, the permeability coefficient fluctuation vs. temperature is calculated using the model. The estimated calculations of the permeability coefficient model were all found to be in good agreement with the experimental data by comparison. Additionally, the variation trend of permeability coefficient of NaCl, Na2SO4, and Na2CO3 type saline soils containing different salt contents is examined. The results indicate that before saline soils freeze, NaCl does not crystallize and thus has little impact on the permeability coefficient, whereas Na2SO4 and Na2CO3 both crystallize and block the pores, the permeability coefficient decreases with decreasing temperature. Once the saline soils have frozen, the freezing temperature has a larger impact on the permeability coefficient. During the early stage of freezing, the lower the freezing temperature is, the larger the permeability coefficient is. In the late stage of freezing, the permeability coefficients with various salt contents tended to be the same.

Funder

Natural Science Foundation of Xinjiang

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Reference54 articles.

1. Hydraulic conductivity of frozen granular soils;Andersland;J. Environ. Eng.,1996

2. Predicting unfrozen water contents in frozen soils from surface area measurements;Anderson;Highw. Res. Rec.,1972

3. About permeability of subsurface soils in case of incomplete saturation;Averjanov;Engl. Collect.,1950

4. The remediation efficiency of heavy metal pollutants in water by industrial red mud particle waste;Bai;Environ. Technol. Innovation,2022

5. Cotransport of heavy metals and SiO2 particles at different temperatures by seepage;Bai;J. Hydrology,2021

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3