Quorum Sensing Pseudomonas Quinolone Signal Forms Chiral Supramolecular Assemblies With the Host Defense Peptide LL-37

Author:

Zsila Ferenc,Ricci Maria,Szigyártó Imola Csilla,Singh Priyanka,Beke-Somfai Tamás

Abstract

Host defense antimicrobial peptides (HDPs) constitute an integral component of the innate immune system having nonspecific activity against a broad spectrum of microorganisms. They also have diverse biological functions in wound healing, angiogenesis, and immunomodulation, where it has also been demonstrated that they have a high affinity to interact with human lipid signaling molecules. Within bacterial biofilms, quorum sensing (QS), the vital bacterial cell-to-cell communication system, is maintained by similar diffusible small molecules which control phenotypic traits, virulence factors, biofilm formation, and dispersion. Efficient eradication of bacterial biofilms is of particular importance as these colonies greatly help individual cells to tolerate antibiotics and develop antimicrobial resistance. Regarding the antibacterial function, for several HDPs, including the human cathelicidin LL-37, affinity to eradicate biofilms can exceed their activity to kill individual bacteria. However, related underlying molecular mechanisms have not been explored yet. Here, we employed circular dichroism (CD) and UV/VIS spectroscopic analysis, which revealed that LL-37 exhibits QS signal affinity. This archetypal representative of HDPs interacts with the Pseudomonas quinolone signal (PQS) molecules, producing co-assemblies with peculiar optical activity. The binding of PQS onto the asymmetric peptide chains results in chiral supramolecular architectures consisting of helically disposed, J-aggregated molecules. Besides the well-known bacterial membrane disruption activity, our data propose a novel action mechanism of LL-37. As a specific case of the so-called quorum quenching, QS signal molecules captured by the peptide are sequestered inside co-assemblies, which may interfere with the microbial QS network helping to prevent and eradicate bacterial infections.

Publisher

Frontiers Media SA

Subject

Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3