Validation of skinfold equations and alternative methods for the determination of fat-free mass in young athletes

Author:

Jagim Andrew R.,Tinsley Grant M.,Merfeld Brandon R.,Ambrosius Abby,Khurelbaatar Chinguun,Dodge Christopher,Carpenter Makenna,Luedke Joel,Erickson Jacob L.,Fields Jennifer B.,Jones Margaret T.

Abstract

IntoductionTo cross-validate skinfold (SKF) equations, impedance devices, and air-displacement plethysmography (ADP) for the determination of fat-free mass (FFM).MethodsMale and female youth athletes were evaluated (n = 91[mean ± SD] age: 18.19 ± 2.37 year; height: 172.1 ± 9.8 cm; body mass: 68.9 ± 14.5 kg; BMI: 23.15 ± 3.2 kg m−2; body fat: 19.59 ± 6.9%) using underwater weighing (UWW), ADP, and SKF assessments. A 3-compartment (3C) model (i.e., UWW and total body water) served as the criterion, and alternate body density (Db) estimates from ADP and multiple SKF equations were obtained. Validity metrics were examined to establish each method's performance. Bioelectrical impedance analysis (BIA), bioimpedance spectroscopy (BIS), and the SKF equations of Devrim-Lanpir, Durnin and Womersley, Jackson and Pollock (7-site), Katch, Loftin, Lohman, Slaughter, and Thorland differed from criterion.ResultsFor females, Pearson's correlations between the 3C model and alternate methods ranged from 0.51 to 0.92, the Lin's concordance correlation coefficient (CCC) ranged from 0.41 to 0.89, with standard error of the estimate (SEE) ranges of 1.9–4.6 kg. For SKF, the Evans 7-site and J&P 3 Site equations performed best with CCC and SEE values of 0.82, 2.01 kg and 0.78, 2.21 kg, respectively. For males, Pearson's correlations between the 3C model and alternate methods ranged from 0.50 to 0.95, CCC ranges of 0.46–0.94, and SEE ranges of 3.3–7.6 kg. For SKF, the Evans 3-site equation performed best with a mean difference of 1.8 (3.56) kg and a CCC of 0.93.DiscussionThe Evans 7-site and 3-site SKF equations performed best for female and male athletes, respectively. The field 3C model can provide an alternative measure of FFM when necessary.

Publisher

Frontiers Media SA

Subject

Public Health, Environmental and Occupational Health,Tourism, Leisure and Hospitality Management,Anthropology,Orthopedics and Sports Medicine,Physical Therapy, Sports Therapy and Rehabilitation,Physiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3