Sensor-based augmented visual feedback for coordination training in healthy adults: a scoping review

Author:

Hegi Heinz,Heitz Jakob,Kredel Ralf

Abstract

IntroductionRecent advances in sensor technology demonstrate the potential to enhance training regimes with sensor-based augmented visual feedback training systems for complex movement tasks in sports. Sensorimotor learning requires feedback that guides the learning process towards an optimal solution for the task to be learned, while considering relevant aspects of the individual control system—a process that can be summarized as learning or improving coordination. Sensorimotor learning can be fostered significantly by coaches or therapists providing additional external feedback, which can be incorporated very effectively into the sensorimotor learning process when chosen carefully and administered well. Sensor technology can complement existing measures and therefore improve the feedback provided by the coach or therapist. Ultimately, this sensor technology constitutes a means for autonomous training by giving augmented feedback based on physiological, kinetic, or kinematic data, both in real-time and after training. This requires that the key aspects of feedback administration that prevent excessive guidance can also be successfully automated and incorporated into such electronic devices.MethodsAfter setting the stage from a computational perspective on motor control and learning, we provided a scoping review of the findings on sensor-based augmented visual feedback in complex sensorimotor tasks occurring in sports-related settings. To increase homogeneity and comparability of the results, we excluded studies focusing on modalities other than visual feedback and employed strict inclusion criteria regarding movement task complexity and health status of participants.ResultsWe reviewed 26 studies that investigated visual feedback in training regimes involving healthy adults aged 18-65. We extracted relevant data regarding the chosen feedback and intervention designs, measured outcomes, and summarized recommendations from the literature.DiscussionBased on these findings and the theoretical background on motor learning, we compiled a set of considerations and recommendations for the development and evaluation of future sensor-based augmented feedback systems in the interim. However, high heterogeneity and high risk of bias prevent a meaningful statistical synthesis for an evidence-based feedback design guidance. Stronger study design and reporting guidelines are necessary for future research in the context of complex skill acquisition.

Publisher

Frontiers Media SA

Subject

Public Health, Environmental and Occupational Health,Tourism, Leisure and Hospitality Management,Anthropology,Orthopedics and Sports Medicine,Physical Therapy, Sports Therapy and Rehabilitation,Physiology

Reference55 articles.

1. Sport biomechanics applications using inertial, force, and EMG sensors: a literature overview;Taborri;Appl Bionics Biomech,2020

2. Search strategies and the acquisition of coordination;Newell,1989

3. Practice;Hossner,2020

4. Beyond task-space exploration: on the role of variance for motor control and learning;Hossner;Front Psychol,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3