Model-based analysis of myocardial strains in left bundle branch block

Author:

Taconné Marion,Owashi Kimi P.,Galli Elena,Duchenne Jürgen,Hubert Arnaud,Donal Erwan,Hernàndez Alfredo I.,Le Rolle Virginie

Abstract

IntroductionAlthough observational studies of patients with left bundle branch block (LBBB) have shown a relation between strain morphologies and responses to cardiac resynchronization therapy (CRT), the evaluation of left ventricle (LV) dyssynchrony from echocardiography remains difficult. The objective of this article is to propose a patient-specific model-based approach to improve the analysis and interpretation of myocardial strain signals.MethodsA system-level model of the cardiovascular system is proposed, integrating: (i) the cardiac electrical system, (ii) right and left atria, (iii) a multi-segment representation of the RVs and LVs, and (iv) the systemic and pulmonary circulations. After a sensitivity analysis step, model parameters were identified specifically for each patient. The proposed approach was evaluated on data obtained from 10 healthy subjects and 20 patients with LBBB with underlying ischemic (n = 10) and non-ischemic (n = 10) cardiomyopathies.ResultsA close match was observed between estimated and observed strain signals, with mean RMSE respectively equal to 5.04 ± 1.02% and 3.90 ± 1.40% in healthy and LBBB cases. The analysis of patient-specific identified parameters, based on bull's-eye representation, shows that strain morphologies are related to both electrical conduction delay, and heterogeneity of contractile levels within the myocardium.DiscussionThe model-based approach improve the interpretability echocardiography data by bringing additional information on the regional electrical and mechanical function of the LV. The analysis of model parameters show that septal motion and global strain morphologies are not only explained by electrical conduction delay but also by the heterogeneity of contractile levels within the myocardium. The proposed approach represents a step forward in the development of personalized LV models for the evaluation of LV dyssynchrony in the field of CRT.

Funder

Agence Nationale de la Recherche

Région Bretagne

Publisher

Frontiers Media SA

Subject

Applied Mathematics,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3