Data Assimilation for Ionospheric Space-Weather Forecasting in the Presence of Model Bias

Author:

Durazo Juan,Kostelich Eric J.,Mahalov Alex

Abstract

The dynamics of many models of physical systems depend on the choices of key parameters. This paper describes the results of some observing system simulation experiments using a first-principles model of the Earth’s ionosphere, the Thermosphere Ionosphere Electrodynamics Global Circulation Model (TIEGCM), which is driven by parameters that describe solar activity, geomagnetic conditions, and the state of the thermosphere. Of particular interest is the response of the ionosphere (and predictions of space weather generally) during geomagnetic storms. Errors in the overall specification of driving parameters for the TIEGCM (and similar dynamical models) may be especially large during geomagnetic storms, because they represent significant perturbations away from more typical interactions of the earth-sun system. Such errors can induce systematic biases in model predictions of the ionospheric state and pose difficulties for data assimilation methods, which attempt to infer the model state vector from a collection of sparse and/or noisy measurements. Typical data assimilation schemes assume that the model produces an unbiased estimate of the truth. This paper tests one potential approach to handle the case where there is some systematic bias in the model outputs. Our focus is on the TIEGCM when it is driven with solar and magnetospheric inputs that are systematically misspecified. We report results from observing system experiments in which synthetic electron density vertical profiles are generated at locations representative of the operational FormoSat-3/COSMIC satellite observing platforms during a moderate (G2, Kp = 6) geomagnetic storm event on September 26–27, 2011. The synthetic data are assimilated into the TIEGCM using the Local Ensemble Transform Kalman Filter with a state-augmentation approach to estimate a small set of bias-correction factors. Two representative processes for the time evolution of the bias in the TIEGCM are tested: one in which the bias is constant and another in which the bias has an exponential growth and decay phase in response to strong geomagnetic forcing. We show that even simple approximations of the TIEGCM bias can reduce root-mean-square errors in 1-h forecasts of total electron content (a key ionospheric variable) by 20–45%, compared to no bias correction. These results suggest that our approach is computationally efficient and can be further refined to improve short-term predictions (∼1-h) of ionospheric dynamics during geomagnetic storms.

Publisher

Frontiers Media SA

Subject

Applied Mathematics,Statistics and Probability

Reference60 articles.

1. Space Weather and Space Climatology: A Vision for Future Capabilities,2013

2. International Reference Ionosphere 2007: Improvements and New Parameters;Bilitza;Adv Space Res,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3