Spherically symmetric black hole spacetimes on hyperboloidal slices

Author:

Vañó-Viñuales Alex

Abstract

Gravitational radiation and some global properties of spacetimes can only be unambiguously measured at future null infinity (ℐ+). This motivates the interest in reaching it within simulations of coalescing compact objects, whose waveforms are extracted for gravitational wave modeling purposes. One promising method to include future null infinity in the numerical domain is the evolution on hyperboloidal slices: smooth spacelike slices that reach future null infinity. The main challenge in this approach is the treatment of the compactified asymptotic region at ℐ+. Evolution on a hyperboloidal slice of a spacetime including a black hole entails an extra layer of difficulty in part due to the finite coordinate distance between the black hole and future null infinity. Spherical symmetry is considered here as the simplest setup still encompassing the full complication of the treatment along the radial coordinate. First, the construction of constant-mean-curvature hyperboloidal trumpet slices for Schwarzschild and Reissner-Nordström black hole spacetimes is reviewed from the point of view of the puncture approach. Then, the framework is set for solving hyperboloidal-adapted hyperbolic gauge conditions for stationary trumpet initial data, providing solutions for two specific sets of parameters. Finally, results of testing these initial data in evolution are presented.

Publisher

Frontiers Media SA

Subject

Applied Mathematics,Statistics and Probability

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Euclidean-hyperboloidal foliation method: application to f(R) modified gravity;General Relativity and Gravitation;2024-05

2. Conformal diagrams for stationary and dynamical strong-field hyperboloidal slices;Classical and Quantum Gravity;2024-04-16

3. Hyperboloidal approach for static spherically symmetric spacetimes: a didactical introduction and applications in black-hole physics;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2024-01-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3