Irradiation resistance of thermo-optical properties of zirconium diboride by 3 MeV electrons

Author:

Rønning Daniel,Tang Yinglu

Abstract

Due to good thermal conductivity and thermal shock resistance, ultra-high temperature ceramics such as zirconium diboride (ZrB2) have been investigated as promising materials to be used in reusable thermal protection systems TPSs are vital to the heat balance of a spacecraft during atmospheric reentry and subsequent operation in space. Hence, the thermal and optical properties are especially critical for such applications. Meanwhile, radiation exposure in space can pose risks of degrading such material properties, especially over a prolonged mission duration. The interaction of electron radiation-which can be found in the outer Van Allen belt, with ZrB2 has not been studied previously and was chosen as the main scope of this study. An electron source of 3 MeV with different radiation exposure time was used. The response of thermo-optical properties of ZrB2 to increasing electron radiation fluences was investigated. ZrB2 samples were made through spark plasma sintering into sintered pellets and then exposed to 3 MeV electron irradiation. These ZrB2 samples were characterized by their microstructure, thermal conductivity, coefficient of thermal expansion (CTE), emittance, absorptivity, and surface roughness before and after irradiation. It was found that ZrB2’s thermo-optical properties showed high radiation resistance at these fluences, and no apparent microstructural change was observed after irradiation. However, the irradiated samples had, on average, a 29% lower surface roughness than the unirradiated samples, possibly originating from electron sputtering.

Publisher

Frontiers Media SA

Reference18 articles.

1. Roughening and ripple instabilities on ion-bombarded Si;Carter;Phys. Rev. B,1996

2. Life under conditions of ionizing radiation;Christa,2002

3. Effects of radiation damage2020

4. The response of ZrB2 to simulated plasma-facing material conditions of he irradiation at high temperature;Garrison;J. Nucl. Mater.

5. The response of ZrB2 to simulated plasma-facing material conditions of He irradiation at high temperature;Garrison;J. Nucl. Mater.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3