When Forests Take Over After Land Abandonment: Dissolved Organic Matter Response in Headwater Mountain Streams

Author:

Estévez Edurne,Álvarez-Martínez Jose M.,Dittmar Thorsten,Barquín José,Singer Gabriel

Abstract

Dissolved organic matter (DOM) represents the largest pool of organic carbon in fluvial ecosystems. The majority of DOM in rivers is of terrigenous origin—making DOM composition highly dependent on vegetation cover and soil properties. While deforestation is still a worldwide anthropogenic phenomenon, current land cover change in temperate regions is often characterized by secondary succession processes following the abandonment of agricultural activities including grazing on pasturelands. This results in (secondary) forest expansion with a consequent, time-lagged transformation of soil properties. Predicting the time scale and spatial scale (i.e., location in the catchment: riparian vs. upslope areas) at which such land cover changes affect the terrestrial-aquatic carbon linkage and concomitantly alter properties of fluvial DOM as drivers of carbon cycling in freshwater ecosystems represents a new scientific challenge. In an attempt to identify potential legacy effects of land cover, i.e., reaction delays of fluvial DOM to changes in land cover, we here investigate the influence of specific current and historic (2 decade-old) land cover types on molecularly resolved fluvial DOM composition in headwater mountain streams. Our analysis is based on a scale-sensitive approach weighing in the distance of land cover (changes) to the stream and ultrahigh-resolution mass spectrometric analyses. Results identified the dominance of terrigenous DOM, with phenolic and polyphenolic sum formulae commonly associated to lignins and tannins, in all the studied streams. DOM properties mostly reflected present-day gradients of forest cover in the riparian area. In more forested catchments, DOM had on average higher molecular weight and a greater abundance of O-rich phenols and polyphenols but less aliphatics. Besides the modulation of the DOM source, our results also point to an important influence of photodegradation associated to variation in light exposition with riparian land cover in defining fluvial DOM properties. Despite expectations, we were unable to detect an effect of historic land cover on present-day DOM composition, at least at the investigated baseflow conditions, probably because of an overriding effect of current riparian vegetation.

Funder

Ministerio de Economía, Industria y Competitividad, Gobierno de España

Eusko Jaurlaritza

Publisher

Frontiers Media SA

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3