Operational low-flow forecasting using LSTMs

Author:

Deng Jing,Couasnon Anaïs,Dahm Ruben,Hrachowitz Markus,van Heeringen Klaas-Jan,Korving Hans,Weerts Albrecht,Taormina Riccardo

Abstract

This study focuses on exploring the potential of using Long Short-Term Memory networks (LSTMs) for low-flow forecasting for the Rhine River at Lobith on a daily scale with lead times up to 46 days ahead. A novel LSTM-based model architecture is designed to leverage both historical observation and forecasted meteorological data to carry out multi-step discharge time series forecasting. The feature and target selection for this deep learning (DL) model involves evaluating the use of different spatial resolutions for meteorological forcing (basin-averaged or subbasin-averaged), the impact of incorporating past discharge observations, and the use of different target variables (discharge Q or time-differenced discharge dQ). Then, the model is trained using the ERA5 dataset as meteorological forcing, and employed for operational forecast with ECMWF seasonal forecast (SEAS5) data. The forecast results are compared to a benchmark process-based model, wflow_sbm. This study also explores the flexibility of the DL model by fine-tuning the pretrained model with limited SEAS5 dataset. Key findings from feature and target selection include: (1) opting for subbasin-averaged meteorological variables significantly improves model performance compared to a basin-averaged approach. (2) Utilizing dQ as the target variable greatly boosts short-term forecast accuracy compared to using Q, with a mean absolute error (MAE) of 25 m3 s−1 and mean absolute percentage error (MAPE) of 0.02 for the first lead time, ensuring reliability and accuracy at the onset of the forecast horizon. (3) While incorporating historical discharge improves the forecasting of Q, its impact on predicting dQ is less pronounced for short lead times. In the operational forecast with SEAS5, compared to the wflow_sbm model, the DL model exhibits skill in forecasting low flows as evidenced by Continuous Ranked Probability Skill Score (CRPSS) median values of all lead times above zero, and better accuracy in forecasting drought events within short lead times. The wflow_sbm model shows higher accuracy for longer lead times. In the exploration of fine-tuning approach, the fine-tuned model generates marginal short-term enhancements in forecasting low-flow events over a non-fine-tuned model. Overall, this study contributes to advancing the field of low-flow forecasting using deep learning approach.

Publisher

Frontiers Media SA

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Drought Early Warning Systems;Hydrometeorology;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3