Recent advances and opportunities in data assimilation for physics-based hydrological modeling

Author:

Camporese Matteo,Girotto Manuela

Abstract

Data assimilation applications in integrated surface-subsurface hydrological models (ISSHMs) are generally limited to scales ranging from the hillslope to local or meso-scale catchments. This is because ISSHMs resolve hydrological processes in detail and in a physics-based fashion and therefore typically require intensive computational efforts and rely on ground-based observations with a small spatial support. At the other end of the spectrum, there is a vast body of literature on remote sensing data assimilation for land surface models (LSMs) at the continental or even global scale. In LSMs, some hydrological processes are usually represented with a coarse resolution and in empirical ways, especially groundwater lateral flows, which may be very important and yet often neglected. Starting from the review of some recent progress in data assimilation for physics-based hydrological models at multiple scales, we stress the need to find a common ground between ISSHMs and LSMs and suggest possible ways forward to advance the use of data assimilation in integrated hydrological models.

Publisher

Frontiers Media SA

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3