Topological Group-Groupoids and Equivalent Categories

Author:

ÖZCAN Abdullah Fatih1,İÇEN İlhan2

Affiliation:

1. İNÖNÜ ÜNİVERSİTESİ

2. INONU UNIVERSITY, FACULTY OF ARTS AND SCIENCES

Abstract

The groupoid was offered by Brandt (1926). The structure of the topological groupoid was given by Ehresmann (1958). A groupoid action is a significant appliance in algebraic topology which is offered by Ehresmann. Another algebraic notion is a covering given by Brown (1988). The topological group-groupoids (Γ-groupoid) were first provided by İçen & Ozcan (2001). The definition of coverings of topological Γ groupoid and actions of topological Γ-groupoid were also given by İçen et al.(2005). In this paper, we will create a category TΓGpdCov(Γ) of coverings of topological Γ-groupoid and a category TΓGpdOp(Γ) of actions of topological Γ-groupoid. And then we will prove that these categories are equivalent.

Publisher

Van Yuzuncu Yil University

Reference8 articles.

1. Brandt, H. (1926). Uber ein verallgemeinerung des Gruppen begriffes. Math. Ann., 96, 360-366.

2. Ehresmann, C. (1958). Categories topologiques et categories differentiables. Colloque de Geometrie Differentielle Globale, Cenrtre Belge de Recherches Mathematiques, Bruxelles, 137-150.

3. Brown, R. (1988). Topology: A geometric account of general topology, homotopy types, and the fundamental groupoid. Ellis Horwood, Chichester.

4. Icen, I. & Ozcan, A.F. (2001). Topological crossed modules and G groupoids. Algebras, Groups Geom. 18, 401-410.

5. Icen, I. & Ozcan, A.F.& Gursoy, M.H. (2005). Topological Group-Groupoids and Their Coverings. Indian J. pure appl. Math., 36(9), 493-502.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3