17O NMR and DFT study of hydrogen bonding: Proton sharing and incipient transfer

Author:

Balevičius Vytautas,Aidas Kęstutis,Maršalka Arūnas,Kuliešius Feliksas,Jakubkienė Virginija,Tumkevičius Sigitas

Abstract

17O NMR spectra of pyridine N-oxide (PyO) complexes with the acids – acetic (AA), cyanoacetic (CyA), propiolic (PA), trichloroacetic (TCA), trifluoroacetic (TFA), hydrochloric (HCl) and methanesulfonic (MSA) – as well as some related molecules with intramolecular H-bonds (4-substituted picolinic acid N-oxides) were studied in an acetonitrile (ACN) solution. In order to evaluate the effect of proton positioning along the O–H…O bond on the measured chemical shifts the full geometry optimization was carried out, and 17O magnetic shielding tensors were calculated using density functional theory (DFT). The modified hybrid functional PBE1PBE with the 6-311++G** basis set and the gauge-including atomic orbital (GIAO) approach were applied. The solvent effect was taken into account by a polarized continuum model using the integral equation formalism (IEFPCM). Two stable structures were deduced for the PyO complexes with TCA and TFA that correspond to the H-bonds with and without proton transfer (PT). Two minima on the potential surface were separated by ca 0.2 Å. The experimental 17O NMR spectra have shown that the PyO-TCA complex in ACN can be considered as H-bonding with incipient PT, whereas it is known from neutron diffraction that in its crystalline state PT occurs. The proton location in PyO-TFA due to the thermally induced proton sharing was found at the middle point. The 17O NMR data for the acids with an intramolecular H-bond (nitroPANO, PANO and methoxyPANO) deviate from the general trend. The factors that can cause it, such as the substitution effect, persistence of nano-crystallites in a solution due to a low solubility, etc., have been discussed.

Publisher

Lithuanian Academy of Sciences

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3