Nonstoichiometric tin oxide films: study by X-ray diffraction, Raman scattering and electron paramagnetic resonance

Author:

Adamchuk Dzmitry V.,Ksenevich Vitaly K.,Poklonski Nikolai A.,Navickas Marius,Banys Jūras

Abstract

Nonstoichiometric SnO/SnO2/SnO2−δ films were fabricated by DC magnetron sputtering and reactive DC magnetron sputtering of tin target with further 2-stage temperature annealing of synthesized materials. X-ray diffraction analysis, Raman spectroscopy and electron paramagnetic resonance (EPR) spectroscopy were employed to study the influence of oxygen content in the plasma during the sputtering process and the temperature of annealing on the stoichiometric and phase composition of synthesized films. It was found that the tin monoxide phase prevailed in the films fabricated by DC magnetron sputtering in the argon plasma followed by a 2-stage annealing process. Nanocrystalline films containing both tin monoxide and tin dioxide were synthesized when reactive magnetron sputtering with a small content of oxygen (of about 1 vol.%) was used. The increase of oxygen content in the plasma to the value of about 2 vol.% leads to the formation of amorphous films. The intensity of the Raman peaks inherent in SnO2 vibration modes was found to depend on the content of the tin monoxide phase in the films. This effect can be attributed to the dissipative transition of electronic excitation from tin monoxide to tin dioxide nanocrystallites.

Publisher

Lithuanian Academy of Sciences

Subject

General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Electrical properties of tin oxide based varistors with PbO addition in humid air;Lithuanian Journal of Physics;2023-04-06

2. Synthesis and characterization of tin (IV) oxide thin films;Optical and Quantum Electronics;2021-04-21

3. Weak Localization in Polycrystalline Tin Dioxide Films;Materials;2020-11-28

4. Features of water vapor adsorption and desorption on the surface of non-stoichiometric tin dioxide films;Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series;2020-04-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3