New approach to evaluating the thermodynamic consistency of melts in the ‘metal-slag’ system based on interatomic interaction parameters

Author:

Togobitska Daria,Belkova Alla

Abstract

The article presents a new approach to evaluating the thermodynamic state of the ‘metal–slag’ system during metal smelting in oxidizing-reducing conditions. The interaction between the metal and slag is analyzed using the model of the structure of metallurgical melts, which considers cooperative ion exchange processes and interatomic interaction parameters. As a result of analyzing experimental data on the compositions of reacting melts during pig iron and steel smelting, criteria were developed for assessing the degree of achieving the equilibrium in the system regarding sulfur. The charge state parameters of the metallic system ZY and the slag system Δe, the slag stoichiometry index ρ, and the charge state parameter of the melt components Zi were used. The regularity of a consistent formation of metallic and slag melts has been established, which is evidenced by a significant correlation between the chemical equivalent of the metal composition ZY and the slag Δe. Analytical dependences were obtained in the form of ZY = fe,ρ). The identified patterns and criteria can be integrated into automated process control systems for regulating the slag regime and producing high-quality pig iron and steel.

Publisher

Lithuanian Academy of Sciences

Reference27 articles.

1. Application of Computational Thermodynamics to Steel Processing: The Case of Steel Cleanness

2. M.P. Shalimov, M.I. Zinigrad, and V.L. Lisin, Thermodynamic characteristics of reactions in metal–slag–gas systems, https://www.ariel.ac.il/sites/conf/mmt/mmt-2002/Papers/Section_1/1_130–146.doc

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3