Few-shot learning for deformable image registration in 4DCT images

Author:

Chi Weicheng123,Xiang Zhiming4,Guo Fen13

Affiliation:

1. School of Software Engineering, South China University of Technology, Guangzhou, Guangdong, China

2. Pazhou Lab, Guangzhou, Guangdong, China

3. Key Laboratory of Big Data and Intelligent Robot of Ministry of Education, South China University of Technology, Guangzhou, Guangdong, China

4. Department of Radiology, Guangzhou Panyu Center Hospital, Guangzhou, Guangdong, China

Abstract

Objectives: To develop a rapid and accurate 4D deformable image registration (DIR) approach for online adaptive radiotherapy. Methods: We propose a deep learning (DL)-based few-shot registration network (FR-Net) to generate deformation vector fields from each respiratory phase to an implicit reference image, thereby mitigating the bias introduced by the selection of reference images. The proposed FR-Net is pretrained with limited unlabeled 4D data and further optimized by maximizing the intensity similarity of one specific four-dimensional computed tomography (4DCT) scan. Because of the learning ability of DL models, the few-shot learning strategy facilitates the generalization of the model to other 4D data sets and the acceleration of the optimization process. Results: The proposed FR-Net is evaluated for 4D groupwise and 3D pairwise registration on thoracic 4DCT data sets DIR-Lab and POPI. FR-Net displays an averaged target registration error of 1.48 mm and 1.16 mm between the maximum inhalation and exhalation phases in the 4DCT of DIR-Lab and POPI, respectively, with approximately 2 min required to optimize one 4DCT. Overall, FR-Net outperforms state-of-the-art methods in terms of registration accuracy and exhibits a low computational time. Conclusion: We develop a few-shot groupwise DIR algorithm for 4DCT images. The promising registration performance and computational efficiency demonstrate the prospective applications of this approach in registration tasks for online adaptive radiotherapy. Advances in knowledge: This work exploits DL models to solve the optimization problem in registering 4DCT scans while combining groupwise registration and few-shot learning strategy to solve the problem of consuming computational time and inferior registration accuracy.

Publisher

British Institute of Radiology

Subject

Radiology Nuclear Medicine and imaging,General Medicine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3