Comparison of machine learning methods for prediction of osteoradionecrosis incidence in patients with head and neck cancer

Author:

Humbert-Vidan Laia12,Patel Vinod1,Oksuz Ilkay23,King Andrew Peter2,Guerrero Urbano Teresa14

Affiliation:

1. Guy's and St Thomas' Hospital NHS Foundation Trust, London, UK

2. School of Biomedical Engineering & Imaging Sciences, King’s College London, London, UK

3. Computer Engineering Department, Istanbul Technical University, Istanbul, Turkey

4. Clinical Academic Group, King’s College London, London, UK

Abstract

Objectives: Mandible osteoradionecrosis (ORN) is one of the most severe toxicities in patients with head and neck cancer (HNC) undergoing radiotherapy (RT). The existing literature focuses on the correlation of mandible ORN and clinical and dosimetric factors. This study proposes the use of machine learning (ML) methods as prediction models for mandible ORN incidence. Methods: A total of 96 patients (ORN incidence ratio of 1:1) treated between 2011 and 2015 were selected from the local HNC toxicity database. Demographic, clinical and dosimetric data (based on the mandible dose–volume histogram) were considered as model variables. Prediction accuracy (measured using a stratified fivefold nested cross-validation), sensitivity, specificity, precision and negative predictive value were used to evaluate the prediction performance of a multivariate logistic regression (LR) model, a support vector machine (SVM) model, a random forest (RF) model, an adaptive boosting (AdaBoost) model and an artificial neural network (ANN) model. The different models were compared based on their prediction accuracy and using the McNemar’s hypothesis test. Results: The ANN model (77% accuracy), closely followed by the SVM (76%), AdaBoost (75%) and LR (75%) models, showed the highest overall prediction accuracy. The RF model (71%) showed the lowest prediction accuracy. However, based on the McNemar’s test applied to all model pair combinations, no statistically significant difference between the models was found. Conclusion: Based on our results, we encourage the use of ML-based prediction models for ORN incidence as has already been done for other HNC toxicity end points. Advances in knowledge: This research opens a new path towards personalised RT for HNC using ML to predict mandible ORN incidence.

Publisher

British Institute of Radiology

Subject

Radiology Nuclear Medicine and imaging,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3