Computer simulation of technological parameters and methods for preventing hydrate formation

Author:

Savenok Olga V.,Zharikova Nailya Kh.,Verisokin Alexander E.ORCID,Arutyunyan Ashot S.,Hadid Mahmoud

Abstract

Relevance. Like many deposits of Western and Central Siberia, the Sakhalin Island deposits (the considered Vostochno-Lugovskoe gas field) faced the problem of gas hydrate formation in wellbores, well plumes and equipment integrated into the technological chain. Hydrate formations clog wells, pipelines and gas pipelines, reducing their working cross-section area. This leads to decrease in flow rate or a complete stop of equipment operation. The operation of valves, measuring instruments, separators and fittings is also disrupted. All this leads to significant economic losses and reduces the efficiency of the field development and operation. The fields that are at the late stages of operation are subject to the greatest influence due to the impossibility of ensuring a hydrate-free operation of wells. From the point of view of the development rationality, it is more profitable to prevent the formation of hydrates than to deal with already formed deposits. It is also worth noting the expediency of transferring the location of hydrate deposition from the well to the surface, where it is much easier and more cost-effective to deal with this complication than in the well. This can be achieved by influencing the parameters of the deposit formation, from which it is impossible to influence the gas composition. Shifting the equilibrium conditions for the formation of hydrates by increasing salinity is also inefficient, since the risk of salt deposition and corrosion increases. Thus, it remains possible to regulate thermobaric parameters by changing a well technological mode of operation, thermal insulation or coating the inside of the tubing with materials, as well as downhole electric heaters, which exclude the possibility of deposit formation. Aim. To substantiate the technology for increasing the efficiency of production wells in the conditions of hydrate formation. Objects. Gas wells operating in the conditions of hydrate formation, as well as the relationship and dependence of the operating parameters of the well and other technological parameters on the potential for the formation of hydrates. Methods. Analysis of the geological and physical conditions and the state of development of the Vostochno-Lugovskoe gas field; computer and mathematical modeling of well operation in the field under conditions of hydrate formation; analysis of ways to prevent the formation of hydrates and the choice of technological solutions. Results. The problem of hydrate formation is widespread in gas fields. Hydrates can partially or completely block the working section of production wells, reducing or completely stopping production. As a result production wells are idle for an average of 18 hours per month. This entails economic losses and interferes with the stable operation of the well. It is shown that due to the specifics of the operation of wells of the Vostochno-Lugovskoe gas field, changing the technological regime to hydrate-free at the moment is impossible. According to the results of well operation simulation, the main temperature losses occur due to heat removal through the tubing. Among the ways to prevent the formation of hydrates, thermal insulation of tubing, partial silicate-enamel coating, the use of a heating cable and methanol are considered. Based on the results of the evaluation of economic and technological efficiency, a heating cable technology was selected with the installation of a turbo-expander to compensate the cost of electricity, as well as the descent of the second row of tubing to the depth of the potential place of hydrate formation in order to increase the heating efficiency and injection coolant or inhibitor directly into the hydrate formation interval.

Publisher

National Research Tomsk Polytechnic University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3