Abstract
We present a mixed finite element method for the elasticity problem. We expand the standard Hu–Washizu formulation to include a pressure unknown and its Lagrange multiplier. By doing so, we derive a five-field formulation. We apply a biorthogonal system that leads to an efficient numerical formulation. We address the coercivity problem by adding a stabilisation term with a parameter. We also present an analysis of the optimal choices of parameter approximation.
References
I. Babuska and T. Strouboulis. The finite element method and its reliability. Oxford University Press, New York, 2001. https://global.oup.com/academic/product/the-finite-element-method-and-its-reliability-9780198502760?cc=au&lang=en&.
D. Braess. Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics. Cambridge University Press, Cambridge, UK, 3rd edition edition, 2007. doi:10.1017/CBO9780511618635.
J. K. Djoko and B. D. Reddy. An extended Hu–Washizu formulation for elasticity. Comput. Meth. Appl. Mech.Eng. 195(44):6330–6346, 2006. doi:10.1016/j.cma.2005.12.013.
J. Droniou, M. Ilyas, B. P. Lamichhane, and G. E. Wheeler. A mixed finite element method for a sixth-order elliptic problem. IMA J. Numer. Anal. 39(1):374–397, 2017. doi:10.1093/imanum/drx066.
M. Ilyas. Finite element methods and multi-field applications. PhD thesis, University of Newcastle, 2019. http://hdl.handle.net/1959.13/1403421.
M. Ilyas and B. P. Lamichhane. A stabilised mixed finite element method for the Poisson problem based on a three-field formulation. In Proceedings of the 12th Biennial Engineering Mathematics and Applications Conference, EMAC-2015, volume 57 of ANZIAM J. pages C177–C192, 2016. doi:10.21914/anziamj.v57i0.10356.
M. Ilyas and B. P. Lamichhane. A three-field formulation of the Poisson problem with Nitsche approach. In Proceedings of the 13th Biennial Engineering Mathematics and Applications Conference, EMAC-2017, volume 59 of ANZIAM J. pages C128–C142, 2018. doi:10.21914/anziamj.v59i0.12645.
B. P. Lamichhane. Two simple finite element methods for Reissner–Mindlin plates with clamped boundary condition. Appl. Numer. Math. 72:91–98, 2013. doi:10.1016/j.apnum.2013.04.005.
B. P. Lamichhane and E. P. Stephan. A symmetric mixed finite element method for nearly incompressible elasticity based on biorthogonal systems. Numer. Meth. Part. Diff. Eq. 28(4):1336–1353, 2011. doi:10.1002/num.20683.
B. P. Lamichhane, A. T. McBride, and B. D. Reddy. A finite element method for a three-field formulation of linear elasticity based on biorthogonal systems. Comput. Meth. Appl. Mech. Eng. 258:109–117, 2013. doi:10.1016/j.cma.2013.02.008.
J. C. Simo and F. Armero. Geometrically non-linear enhanced strain mixed methods and the method of incompatible modes. Int. J. Numer. Meth. Eng. 33(7):1413–1449, may 1992. doi:10.1002/nme.1620330705.
A. Zdunek, W. Rachowicz, and T. Eriksson. A five-field finite element formulation for nearly inextensible and nearly incompressible finite hyperelasticity. Comput. Math. Appl. 72(1):25–47, 2016. doi:10.1016/j.camwa.2016.04.022.
Publisher
Australian Mathematical Publishing Association, Inc.